"On the Unitary Systems Affiliated with Orthonormal Wavelet Theory in n" by Eugen J. Ionascu
 

Document Type

Article

Publication Date

1998

Publication Title

Elsevier

Abstract

We consider systems of unitary operators on the complex Hilbert space L2 (Rn) of the form U :=UDA , Tv1 , ..., Tvn :=[DmT l1 v1 }}} Tln vn : m, l1 , ..., ln # Z], where DA is the unitary operator corresponding to dilation by an n_n real invertible matrix A and Tv1 , ..., Tvn are the unitary operators corresponding to translations by the vectors in a basis [v1 , ..., vn] for Rn . Orthonormal wavelets  are vectors in L2 (Rn ) which are complete wandering vectors for U in the sense that [U: U # U] is an orthonormal basis for L2 (Rn ). It has recently been established that whenever A has the property that all of its eigenvalues have absolute values strictly greater than one (the expansive case) then U has orthonormal wavelets. The purpose of this paper is to determine when two (n+1)-tuples of the form (DA , Tv1 , ..., Tvn ) give rise to the ``same wavelet theory.'' In other words, when is there a unitary transformation of the underlying Hilbert space that transforms one of these unitary systems onto the other? We show, in particular, that two systems UDA , Tei , and UDB, Tei , each corresponding to translation along the coordinate axes, are unitarily equivalent if and only if there is a matrix C with integer entries and determinant \1 such that B=C&1AC. This means that different expansive dilation factors nearly always yield unitarily inequivalent wavelet theories. Along the way we establish necessary and sufficient conditions for an invertible real n_n matrix A to have the property that the dilation unitary operator DA is a bilateral shift of infinite multiplicity.

Included in

Mathematics Commons

Share

COinS