Document Type


Publication Date


Publication Title

Geological Society of America


The allochthonous Talladega belt of eastern-northeastern Alabama and northwestern Georgia is a northeast striking, fault bounded block of lower greenschist facies metasedimentary and metaigneous rocks that formed along the margin of Laurentia at or outboard of the seaward edge of the Alabama promontory. Bounded by metamorphic rocks of the higher grade Neoproterozoic(?) to Carboniferous eastern Blue Ridge on the southeast and unmetamorphosed to anchimetamorphic Paleozoic rocks of the Appalachian foreland on the northwest, the Talladega belt includes shelf facies rocks of the latest Neoproterozoic/earliest Cambrian Kahatchee Mountain Group, Cambrian-Ordovician Sylacauga Marble Group, and the latest Silurian(?) to uppermost Devonian/earliest Mississippian Talladega Group. Along the southeastern flank of these metasedimentary sequences, a Middle Ordovician back-arc terrane (Hillabee Greenstone) was tectonically emplaced along a cryptic pre-metamorphic thrust fault (Hillabee thrust) and subsequently dismembered with units of the upper Talladega Group along the post-metamorphic Hollins Line fault system. Importantly, strata within the Talladega belt are critical for understanding the tectonic evolution of the southern Appalachian orogen when coupled with the geologic history of adjacent terranes. Rocks of the lower Talladega Group, the Lay Dam Formation, suggest latest Silurian-earliest Devonian tectonism that is only now being recognized in other areas of the southern Appalachians. Additionally, correlation between the Middle Ordovician Hillabee Greenstone and similar bimodal metavolcanic suites in the Alabama eastern Blue Ridge and equivalent Dahlonega Gold belt of Georgia and North Carolina suggests the presence of an extensive back-arc volcanic system on the Laurentian plate just outboard of the continental margin during the Ordovician and has significant implications for models of southern Appalachian Taconic orogenesis.