LATE CRETAKEOUS DINOSAURS FROM THE BLUFFTOWN FORMATION IN WESTERN GEORGIA AND EASTERN ALABAMA

DAVID R. SCHWIMMER,1 G. DENT WILLIAMS,1 JAMES L. DOBIE,2 AND WILLIAM G. SIESSER3

1Department of Chemistry and Geology, Columbus College, Columbus, Georgia 31907-2079,
2Department of Zoology and Wildlife Science, Auburn University, Auburn, Alabama 36849-5414, and
3Department of Geology, Vanderbilt University, Nashville, Tennessee 37235

ABSTRACT—Fragmentary bones and teeth of three Late Cretaceous dinosaur taxa occur along both sides of the Georgia–Alabama border, in the extreme southeastern Coastal Plain Province. The localities lie in the middle and upper Blufftown Formation, in nearshore marine deposits. Exogyra ssp. and calcareous nannofossils give a late Santonian through mid-Campanian age range. Taxa determined are: Hadrosauridae, genus and species indeterminate; Ornithomimidae, genus and species indeterminate; and Alberthosaurus sp.

INTRODUCTION

Dinosaur bones are distributed widely, but sparsely, in Upper Cretaceous marine strata of the Coastal Plain Province of the eastern United States. The majority of these fossils are isolated limb bones, vertebrae, and teeth of hadrosaurs (Ornithischia, Ornithopoda), largely unassignable below family; nevertheless, several partial hadrosaur skeletons are known, including the eponymous hadrosaur Hadrosaurus foulkii Leidy, 1858, from the Matawan Formation in New Jersey, and Lophorodon atopus Langston, 1960, from the Mooreville Formation in western Alabama. Carnivorous dinosaur remains (Saurischia, Theropoda), from both large and small taxa (i.e., “Carnosauria” and “Coelurosauria” in general usage), are also common in the Coastal Plain (indeed, Russell, 1988, stated that theropods are the most widely distributed dinosaurs in marine strata). These again are largely isolated bones and teeth, although a substantial skeleton comprises the type specimen of Dryptosaurus aquilunguis (Cope, 1866), an anomalous, possibly endemic, large taxon. Another partial theropod skeleton, not yet formally described (see King et al., 1988; Baird, 1989), has been found in upper Campanian age strata in central Alabama.

Horner (1979) provided an annotated checklist of Upper Cretaceous dinosaur taxa and occurrences from marine strata in North America known to that date. The collective eastern Coastal Plain assemblage of Horner (1979) included eight clearly different dinosaur taxa, and several additional forms not determinable below family. Baird and Horner (1979) reduced the generic count by absorption of Parrosaurus into Hypsilophodon.
(which they assigned to Sauropoda, family indet.) and by absorption of Coelosaurus (Theropoda, Ornithomimidae) into Ornithomimus. A further reduction of apparent taxonomic diversity in Cretaceous eastern Coastal Plain strata occurred with recognition that the caudal vertebrae comprising Parrosaurus missouriensis (Gilmore, 1945) belonged to an indeterminate large hadrosaur (Parris et al., 1988) rather than to a sauropod. Substantial numbers of new dinosaur localities and specimens (but as yet, no new taxa) have become known in the Late Cretaceous eastern outcrop since Horner (1979); these are listed in Appendix A and are included, in part, by Russell (1988) in a checklist of occurrences of all vertebrates in North American Cretaceous marine rocks.

The purpose of this paper is to describe the Late Cretaceous dinosaur fauna from the marine strata in the Coastal Plain in westernmost Georgia and easternmost Alabama. The fossils come from the Blufftown Formation, of late Santonian through mid-Campanian age. The occurrence of dinosaur bones in the study area has been noted previously (Cope, 1878; Stephenson, 1911; Schwimmer, 1981, 1986a; Schwimmer et al., 1988; Russell, 1988; Schwimmer and Best, 1989) but this is the first systematic report of the entire regional assemblage.

GEOLOGIC SETTING

Geography and stratigraphy.—The study area is located largely in the valley of the Chattahoochee River, at the western Georgia–eastern Alabama border, and occupies a pivotal geomorphic position between the Atlantic and eastern Gulf Coastal Plain Provinces (Figure 1). During the Late Cretaceous, these two sedimentary provinces were not clearly demarcated by peninsular Florida, but they did sustain significantly different marine environments and dominant styles of sedimentation—respectively, pericontinental marine/coarse siliclastic on the Atlantic coast, versus epicontinental marine/clay and carbonate on the Gulf coast. Cretaceous sediments in the study area have been variously incorporated as part of the eastern Gulf section (e.g., in Stephenson, 1911, 1914; Reinhardt and Donovan, 1986; Skotnicki and King, 1986), as an intermediate link between the Gulf and Atlantic Coastal Plains (Sohl and Smith, 1981), and as the southern limit of the Atlantic Coastal Plain (Owens and Gohn, 1985). Evidence from regional studies of Late Cretaceous fish (Case and Schwimmer, 1988) and other vertebrates from the study area (Schwimmer, 1986a) suggests the presence of coastal and marine vertebrate assemblages somewhat more typical of the Atlantic Coastal Plain than of the Gulf Coastal Plain (see also "Additional Observations").

Fossils described here were collected from four localities, as shown in Figure 1 (to which all locality references are made). Detailed stratigraphy of the Blufftown Formation at locality 1 in western Georgia is presented in Schwimmer (1986b) and Case and Schwimmer (1988). Sedimentary analysis of the Blufftown Formation in eastern Alabama is presented in King and Skotnicki (1986), Skotnicki and King (1986), and King (1990). Fossils described in this study occur in the upper-middle to uppermost portions of the relatively thick (125 m) formation, and most likely accumulated in back-barrier or estuarine settings during relatively high sea-level stands. At Hannahatchee Creek in western Georgia (locality 1), dinosaur bones were collected from the uppermost few meters of the Blufftown Formation in sediments representing a brief transgressional interval with a condensed marine sedimentary section.

Age of the fossils.—The Blufftown Formation was deposited largely during the early and mid-Campanian, but a substantial portion of the lower part of the formation may have been deposited during the late Santonian. The oyster Exogyra ponderosa Roemer is associated with dinosaur bones at all four localities; the range zone of E. ponderosa extends through the upper Santonian to the mid-Campanian (Stephenson, 1914; Stephenson et al., 1942; Lerman, 1965; Sohl and Smith, 1981). At Hannahatchee Creek in Stewart County, Georgia, the strata contain abundant Exogyra ponderosa var. erraticostata Stephenson, which does not have a well-delimited stratigraphic range but is commonly observed only near the upper range of the species (Lerman, 1965; DRS field observations). Its occurrence therefore suggests a mid-Campanian age at locality 1.

Calcareaous nannofossils were analyzed from matrix enclosing dinosaur bones at localities 1 and 2. At locality 2, a well-preserved assemblage of nannofossils included Lucianorhabdus cayucii Dellandre and Marthastraletes furcatus (Dellandre), whose overlapping ranges delimit Sissingsh's (1977) Zones 16 to 18 (latest Santonian–early Campanian). At locality 1, the matrix contained few diagnostic nannofossils; however, rare Calcareites obscurus (Dellandre) and Reinhardites anthophorus (Dellandre) occur and their ranges overlap within Sissingsh's Zones 17 to 22 (early to mid-Campanian).

In summary, the probable dates for the Blufftown dinosaur fossils are: mid-Campanian at locality 1; late Santonian to early Campanian at locality 2; and late Santonian to mid-Campanian at localities 3 and 4, which are dated only by stratigraphic association and the presence of Exogyra ponderosa.

SYSTEMATIC PALEONTOLOGY

Terminology and collections.—Orientations and anatomical nomenclature follow suggestions in Weishampel et al., (1990). Materials listed are housed and cataloged in the Cretaceous research collections at Columbus College (CCK) and Auburn University Museum of Paleontology (AUMP).
FIGURE 2—1–3, Albertosaurus sp. 1–3, CCK-87-5-1, left metatarsal IV lacking the distal condyle, cranial, medial, and caudal views, locality 1, ×0.35; 7, CCK-90-1-2, phalangeal fragment, locality 4, ×1.5; 8, 9, CCK-83-81-7, CCK-85-1-2, cross sections of theropod bone shafts, showing thick cortical bone and smooth medullary cavity linings, locality 1, ×1.2. 4–6, Ornithomimidae, gen. and sp. indet. 4, 5, CCK-85-1-1, fragment of the proximal one-third of a right tibial shaft, lateral and caudal views, locality 1, ×0.55; 6, cross-sectional view, distal aspect of CCK-85-1-1, ×0.7.
Order SAURISCHIA Seeley, 1888
Suborder THEROPODA Marsh, 1881
Family TYRANNOSAURIIDAE Osborn, 1906
Genus ALBERTOSAURUS Osborn, 1905
ALBERTOSAURUS? sp. figure 2.1-2, 2.7-2.9

Material.—CCK-87-5-1 (loc. 1), left metatarsal IV lacking the distal condyle. CCK-90-1-2 (loc. 4), fragmentary pedal phalanx. CCK-83-81-7, CCK-85-1-2 (loc. 1), CCK-90-5-1 and -2 [not figured] (loc. 4), four indeterminate, large, theropod metapodial shaft fragments.

Discussion.—Fragmentary Cretaceous theropod bones from the eastern Coastal Plain Cretaceous outcrop are rarely identifiable at even the generic level (Horner, 1979; Baird and Horner, 1979; Carpenter, 1982; Baird, 1989). However, the left fourth metatarsal from locality 1 (Figure 2.1-2.3) is sufficiently preserved to allow favorable comparison with specimens from the Campanian Judith River (Oldman) Formation in Alberta referred to Albertosaurus (e.g., Tyrrell Museum of Paleontology 67.15, 16 and 73.30.1). The Blufftown specimen is undistorted and nearly complete, lacking only some margins of the proximal end and the distal condyle. Shaft diameters immediately below and nearly complete, lacking only some margins of the proximal head are 42.0 mm medial-lateral by 51.0 mm cranio-caudal. Reconstructed length is approximately 440 mm; the proximal head are 42.0 mm medial-lateral by 51.0 mm cranio-caudal. Among these shaft fragments, the external cross-sectional diameters range to the total cross-sectional area (see Figure 2.8, 2.9). Among these shaft fragments, the external cross-sectional diameters range from 36.0 to 55.0 mm, and all feature wall thicknesses equal to or greater than diameters of medullary cavities.

As noted in the introduction, a partial theropod skeleton was collected recently in central Alabama from the Demopolis Chalk in Montgomery County (King et al., 1988, describe the sedimentary environment of the site). This theropod is presently in preparation in the Red Mountain Museum, Birmingham, and, at late Campanian age, is slightly younger than the Blufftown material. However, comparison of the left fourth metatarsals from the Blufftown and Montgomery theropods shows they are indistinguishable in size and overall morphology (James Lamb, personal commun., and see Baird, 1989, p. 56).

The remaining theropod bones listed above are taxonomically nondescript. The single phalangeal fragment is split medially and retains less than one-half of the distal-lateral surfaces. Its assignment as a pedal phalanx is based on the relatively large lateral fossa. The four metapodial shaft fragments are assigned to Theropoda by virtue of extremely smooth surfaces lining the open medullary cavities and by their round to subround cross sections. They are further identifiable as "carnosaur" remains by the presence of relatively thick, dense cortical bone relative to the thin shaft walls and correspondingly large medullary cavity. This individual was still a lightly built, cursorial theropod specimen is from a considerably larger animal than ANSP 9222, showing this individual was still a lightly built, cursorial theropod.

Table 1—Comparative measurements (in mm) of ANSP 9222, right tibia, cotype of Ornithomimus antiquus (Leidy, 1865), and Blufftown tibial fragment CCK-85-1-1.

<table>
<thead>
<tr>
<th></th>
<th>ANSP 9222</th>
<th>CCK-85-1-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral</td>
<td>33.0</td>
<td>63.0</td>
</tr>
<tr>
<td>Cranio-caudal</td>
<td>28.5</td>
<td>62.0</td>
</tr>
<tr>
<td>Wall thicknesses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medial</td>
<td>unavailable</td>
<td>16.2</td>
</tr>
<tr>
<td>Cranio-medial</td>
<td>do.</td>
<td>19.0</td>
</tr>
<tr>
<td>Caudal</td>
<td>do.</td>
<td>8.2</td>
</tr>
<tr>
<td>Lateral</td>
<td>do.</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Family ORNITHOMIMIDAE Marsh, 1890
Gen. and sp. indet. figure 2.4-2.6

Material.—CCK-85-1-1, fragment of the proximal one-third of a right tibial shaft (loc. 1).
Discussion.—The only eastern North American ornithomimid assigned genus and species is Coelosaurus antiquus Leidy, 1865, based on a complete right tibia and fragments of additional legbones from the late Maastrichtian of New Jersey (see Baird and Horner, 1979). Coelosaurus was considered by Russell (1972) a nomen dubium, although a valid ornithomimid, and Baird and Horner (1979) reassigned the species antiquus to Ornithomimus. Ornithomimid fossils from the Upper Cretaceous Coastal Plains in eastern United States have traditionally been classified as O. antiquus for lack of other known representatives of the family (e.g., Baird, 1986). The single ornithomimid specimen from the Blufftown Formation, consisting of a fragment of the right tibial shaft, especially invites comparison with the syntype right tibia of O. antiquus (Academy of Natural Sciences, Philadelphia [ANSP] 9222). The fragment comes from the proximal shaft and includes part of the fibular crest on the lateral surface. Given the limited information available, the Blufftown fragment compares favorably with the corresponding region of ANSP 9222 except for its larger size and slightly greater cranio-caudal diameter. Dimensions of CCK-85-1-1 and ANSP 9222, taken at comparable sections at mid-point of the fibular crest, are presented in Table 1.

The slightly greater cranio-caudal proportion of the Blufftown specimen may reflect positive allometry. Although the Blufftown specimen is from a considerably larger animal than ANSP 9222, the thin shaft walls and correspondingly large medullary cavity show this individual was still a lightly built, cursorial theropod with limb proportions typical of Ornithomimidae. Nevertheless, given that the Blufftown specimen is considerably older as well...
subfamily HADROSAURINAE Lambe, 1918

Family HADROSAURIDAE Cope, 1869

Order ORNITHISCHIA Seeley, 1888

Suborder ORNITHOPODA Marsh, 1881

Subfamily HADROSAURINAE Lambe, 1918

Gen. and sp. indet.

Figures 3.1–3.11, 4.1–4.16

Material.—CCK-87-20-1 through CCK-87-20-9 (loc. 2), nine associated left legbones, including tibia with attached, partially ablated astragalar, fibula, metatarsals II and III, a distal tarsal, and four phalanges of digit IV, including the ungual. AUMP3083 (loc. 3), left metatarsal IV. CCK-87-20-16-1 (loc. 1), small posterior caudal vertebra with ablated neural arch. CCK-90-17-1 (loc. 1), large posterior caudal vertebra with ablated neural arch. CCK-85-2-1 (loc. 1), distal third of a left metacarpal III. CCK-79-3-1 (loc. 1), ablated buccal-caudal region of a small left dentary. CCK-90-4-1 (loc. 1), dentary tooth crown and partial root. AUMP3026 (loc. 3), ablated small tooth crown, position indeterminate. CCK-90-6-1 (loc. 4), ablated large tooth crown, position indeterminate.

Discussion.—None of these hadrosaur remains from the Blufftown Formation can be assigned definitively to either subfamily Hadrosaurinae or Lambeosaurinae (Weishampel and Horner, 1990); nevertheless, most identifiable duckbilled dinosaurs from the Atlantic and Gulf Coastal Plains are hadrosaurines, and the tentative classification here is largely based on that probability (although the single dentary tooth discussed below adds some support to the assignment).

The associated legbones from locality 2, CCK-87-20-1–9, are undistorted and largely complete; missing are a portion of the medial surface of the internal distal tibial condyle and the adjacent medial half of the astragalar, and the lateral surface of the distal fibular head. These ablated surfaces were apparently weathered on the outcrop prior to discovery. The distal tarsal element CCK-87-20-9 (Figure 4.10, 4.11) is a bone that was first described by Lull and Wright (1942, p. 92), but is rarely figured or recognized (see Weishampel and Horner, 1990, p. 553). The bones are typically hadrosaurine in overall morphology; however, the tibia is notably wide at the knee and ankle and massive through the shaft in proportion to length. Conversely, in comparison with Hadrosaurus foulkii, the metatarsals are relatively long (see below). Articular surfaces of these bones show considerable rugosity, suggesting some resorption or ossification of cartilage; thus, despite the relative shortness of the tibia and fibula, there is the impression of a large, old individual. Table 2 compares available dimensions of CCK-87-20-1–9 with the type of Hadrosaurus foulkii Leidy, 1858, from the Campanian of New Jersey.
toward preservation of distal limb and tail bones (plus hadrosaur teeth and at least one lower jaw bone). Insight into the cause of this phenomenon comes from pioneering taphonomic studies by Weigelt (1927, p. 82). Weigelt cited even earlier studies on large mammal carcasses subject to wave and river current action, which disarticulated as follows: "... individual vertebrae became detached, those of the tail first, then the extremities and skull. Finally, under favorable conditions, the thorax is buried in the bank." The same text continues with observations that beached carcasses are typically destroyed by surf, and that lower jaws tend to fall off early in decomposition. By this model we may envisionloat-and-float dinosaur carcasses on the Late Cretaceous coastal seas, with limbs, tails, and heads dangling below the axis of the torso. Distal limb and tail bones, and occasionally jaws, dropped into bottom sediments to become the majority of fossils. It is assumed that proximal limb elements and skulls tended to remain with the trunks, which were blown or washed ashore and rarely preserved. Sharks undoubtedly assisted in dismemberment of dinosaur carcasses, and we have observed unusual abundances of teeth from Squaliwalkaxaupi (Agassiz) in the matrix enclosing CCK-87-20-1-9, suggesting that this was a major selachian scavenger.

ACKNOWLEDGMENTS

We collectively thank the dozens of students, colleagues, and friends who have accompanied us in fieldwork leading to this report. The following individuals were materially involved in collecting, locating, or recovering specimens described here: Bishop "Butch" Anthony, Jr., Robert H. Best, Timothy W. Gray, Jeremy C. Mount, Jerry W. Mount, Robert L. Rollier, Jr., and Thomas D. Scheiwe. We acknowledge valuable guidance from and discussions with Donald Baird, John R. Horner, James P. Lamb, and Kyle L. Davies during various times of the study. The manuscript benefited from reviews for this journal by Donald L. Wolberg and Kyle L. Davies. Jon Haney of Columbus College provided photo-reproduction and graphics services. Access to locality 1 was freely provided by Mead Corp., Coated Board Div., through the assistance of Jack D. Harris. Funding for field research was provided by grant no. 3787-88 from the Committee for Research and Exploration of the National Geographic Society, and by Faculty Development grants from the Columbus College Foundation. We are grateful to all who have given their help.

REFERENCES

APPENDIX

A checklist of publications and other reports on Late Cretaceous dinosaur localities and collections from marine strata of the eastern United States, subsequent to Horner (1979).

North Carolina: Black Creek Formation (Grandstaff et al., 1987; Denton and Galagher, 1989).

Georgia: Blufftown Formation (Schwimmer et al., 1988; Schwimmer and Best, 1989).

Alabama: Demopolis Formation (King et al., 1988); Bluffton Formation (Schwimmer et al., 1988).

Mississippi: ?Eutaw or ?McShan Formations and Selma Group (Carpenter, 1982).

Missouri: unnamed Campanian paleokarst (Parris et al., 1988).

Tennessee: undetermined Campanian stratum on Coon Creek (Bryan et al., 1989).