Paleobiology and Geochemistry of Siliceous Concretions in the Conasauga Formation, Middle Cambrian, Northwestern Georgia

David R. Schwimmer
William J. Frazier
Columbus State University

William M. Montante
Marsh USA, Inc.
Localities and Correlations

Conasauga Fm. outcrops

In this study

Age of the concretion-bearing beds
Masses of concretions in stream beds, cleared forest tracts
Fossils Preserved on Concretion Surfaces

Complete trilobite exoskeletons

Elrathia antiquata
Fossils in Conasauga concretions are often articulated and in full-relief, rather than flattened, typical in shales, or disarticulated as in most Cambrian limestones and sandstones.

Elrathia antiquata (from adjacent strata)
Positive (left) and negative (right) trilobite dorsal exoskeletal preservation

Elrathia antiquata
Rare Trilobites

Bolaspis labrosa

Olenoides sp.
Isolated trilobite sclerites (“Cambrian trilobite hash”)

![Image of isolated trilobite sclerites]
Hyolithids, cf. *Haplophrentis carinatus*
Rare, smaller fossils
(*Scenella* and agnostoid trilobites)
Exceptional Preservation

Arthropod appendage
Chlorophyte (Green) Algae
Indeterminate structures on concretion surfaces, possibly lithistid spicules (demosponges)
Whole-body preservations in concretions

“Brooksella”
“Brooksella” symmetries:

pentameral
bilateral
History of *Brooksella (Laotira)* identifications

Walcott: 1896, 1898: Medusoid scyphozoans

Resser, 1938; Caster, 1945; Harrington & Moore, 1956 (Treatise...), Willoughby and Robison, 1979: still scyphozoans

Cloud, 1960: gas bubbles

Fürsich and Bromley, 1985; Seilacher and Goldring, 1996; Rindsberg, 2000: ichnofossils, cf. *Dactyloidites asteroides*; *(Laotira, a junior synonym, and Brooksella suppressed)*

Ciampaglio, et al., 2005: hexactinellid sponges (resurrecting *Brooksella* as a valid poriferan genus)

Schwimmer and Montante, 2007: whatever.
What is “Brooksella”?

The Pudding Hypothesis

Brooksella

Jello
The Coprolite hypothesis
However, these may represent several poriferan taxa
Other whole-body preservations

Calcisponges

Eifellia globosa
Concretion with *Eiffelia* partially exposed

Eiffelia showing possible surface expression of spicules
Coprolite or cololite (gut contents) of priapulid worm, cf. *Ottoia prolifica*, composed of oriented hyolithids.
GEOCHEMICAL/SEDIMENTOLOGICAL OBSERVATIONS
Internally, concretions are microquartz-cemented clay with variable textures, ranging from nearly homogeneous to stratified, pelletized and porous

(All microscopic views at 40x)
Many contain trilobite (and possibly other) sclerites. We did not observe clearly identifiable sponge spicules, but it is assumed these were dissolved and comprise the siliceous cement.
Trilobite sclerites are typically present inside concretions which show many sclerites on the surfaces, which also tend to have many voids.
Biogenic pellets are also common in concretions with external fossils
Some rare concretions show septarian structures apparently due to shrinkage contemporaneous with silicification. Note the well-preserved internal stratification which is cut by shrink-cracks.
Conclusions about mode of concretion formation:

Ecological:

1. Abundance of benthic fauna, especially sponges, trilobites and hyoliths, shows subtidal environment (middle to distal outer shelf) but in photic zone (given presence of algae).

2. The fine-grained sedimentary texture confirms accumulation below wave-base in low-energy, quiet-water conditions, but with occasional turbid flows.

3. Preservation of lightly-sclerotized arthropod limbs, *Scenella*, and *Brooksella*, results from silica-induration subsequent to pyrite fixation, which is commonplace in the enclosing shales (*fide* Schwimmer & Montante, 2007)
Geochemical and Sedimentological:

1. The clayey texture of the sediment allowed little diffusion of dissolved silica, thus accounting for the abundance of concretions.

2. The thickness of enclosing sedimentary layers decreases at the margins of many concretions, indicating that silica cementation contemporaneous with compaction. Silica cementation was post-depositional but probably during early diagenesis.

3. The concretionary horizon can be traced over a significant distance, suggesting that it represents a condensed stratigraphic section due to a period of sediment starvation.
Why the abundance of Siliceous Concretions in the Conasauga Fm?

The occurrence is the result of a serendipitous association of events:

1) the depositional environment was in relatively quiet water, but still shallow enough to be dominated by benthic fauna

2) the concretionary horizon in the Conasauga Formation represents a transgressive systems track, leading to low rates of sedimentation and optimum conditions for occupation by masses of sponges. (N.B. The stratigraphic position of the concretionary horizon in the *Bolaspidella* zone makes it correlative with the Wheeler Formation in Nevada, which also formed as a result of a marine transgressive event, interpreted by Howley, *et al.* (2006) to represent a eustatic sea-level increase)

3) the large number of siliceous sponges deposited silica locally (i.e. the silica-secreting organisms were benthic, vs. later siliceous deposition dominated by planktonic diatoms)
Postscript:

Alternative explanation for the source of Conasauga concretions:

Acknowledgments: We thank Roger Brown, for assistance in map graphics, Clinton Barineau for assistance in microphotography, Jerry Armstrong for contributing concretion specimens, and Julian Gray for assistance in preparing specimens.