AUTOMORPHISMS OF NORMAL PARTIAL TRANSFORMATION SEMIGROUPS

by INESSA LEVI

(Received 18 March, 1985; revised 16 September, 1986)

1. Introduction. We let X be an arbitrary infinite set. A semigroup S of total or partial transformations of X is called \mathcal{G}_X-normal if $hSh^{-1} = S$, for all h in \mathcal{G}_X, the symmetric group on X. For example, the full transformation semigroup \mathcal{I}_X, the semigroup of all partial transformations \mathcal{P}_X, the semigroup of all 1–1 partial transformations \mathcal{I}_X and all ideals of \mathcal{I}_X, \mathcal{P}_X and \mathcal{I}_X are \mathcal{G}_X-normal.

If S is a \mathcal{G}_X-normal semigroup then for each $h \in \mathcal{G}_X$ the map

$$\phi : f \mapsto hfh^{-1} \quad (f \in S)$$

is an inner automorphism of S. The set Inn S of all inner automorphisms of S is a subgroup of the group Aut S of all automorphisms of S. In [3] we showed that if S is a \mathcal{G}_X-normal subsemigroup of \mathcal{I}_X then inner automorphisms exhaust all automorphisms of S, that is

$$\text{Aut } S = \text{Inn } S.$$

The purpose of this paper is to extend the above result to an arbitrary \mathcal{G}_X-normal subsemigroup S of \mathcal{P}_X and therefore to give a complete description of all automorphisms of any \mathcal{G}_X-normal semigroup.

Schreier [10] in 1937 was the first to show that Aut $\mathcal{I}_X = \text{Inn } \mathcal{I}_X$. Since then many authors have described the automorphisms of various \mathcal{G}_X-normal semigroups: Mal'cev [5] (all ideals of \mathcal{I}_X); Liber [4] (\mathcal{I}_X and all its ideals); Gluskin [1] (\mathcal{P}_X); Shutov [8] (the semigroup of all partial transformations shifting at most a finite number of elements); Shutov [9] (all ideals of \mathcal{P}_X); Schein [6, 7] (all \mathcal{G}_X-normal subsemigroups of \mathcal{I}_X, but see [2] for a special case). In [11] Sullivan showed that if S is a subsemigroup of \mathcal{P}_X containing a constant idempotent with the range $\{x\}$, for each $x \in X$, then Aut $S = \text{Inn } S$. In particular if S is a \mathcal{G}_X-normal subsemigroup of \mathcal{P}_X containing a constant map then Aut $S = \text{Inn } S$. Our result completes the task of characterization of all automorphisms of a \mathcal{G}_X-normal semigroup, subsuming previously stated results for \mathcal{G}_X-normal semigroups.

In this paper we continue the development of a technique involving the production of certain maximal one-sided ideals, first introduced in [3]. Here the assumption (made due to [3]) that S contains a proper partial transformation allows us to restrict ourselves to the study of only left ideals. Hence, unlike in [3], a uniform proof is given for the case when $S \subseteq \mathcal{I}_X$ as well as when S contains transformations which are not 1–1.

2. Transitivity. We say that a semigroup S is trivial if $S \subseteq \{\Phi, \iota\}$, where Φ is the empty and ι is the identity transformation. In what follows S is non-trivial. The composition of transformations f and g in S defined by the formula

$$fg(x) = f(g(x)), \quad \text{where } x \in X.$$
In this section we show that each non-trivial \mathcal{B}_X-normal semigroup S is transitive. If S also is a constant-free semigroup then it is 2-transitive (Definition 2.3).

For an f in \mathcal{P}_X we denote the range of f by $R(f)$, the domain of f by $D(f)$ and the partition of f by $\pi(f)$ ($=\{f^{-1}(x):x \in R(f)\}$). If S is a subsemigroup of \mathcal{P}_X, let

$$D(S) = \{D(f): f \in S\} \text{ and } \pi(S) = \{\pi(f): f \in S\}.$$

We say that $D(S)$ ($\pi(S)$) is normal if, for each $h \in \mathcal{B}_X$, $h(D(S)) = D(S)$ ($h(\pi(S)) = \pi(S)$).

The following lemma is straightforward.

Lemma 2.1. If S is a \mathcal{B}_X-normal semigroup, then $D(S)$ and $\pi(S)$ are normal.

The proof of our next proposition coincides with the proof of result 1.3 of [3].

Proposition 2.2. Every \mathcal{B}_X-normal semigroup is transitive.

Definition 2.3. A semigroup S is 2-transitive if for any two ordered subsets $\{x, u\}$ and $\{y, v\}$ of X ($x \neq u, y \neq v$) there exists an f in S with $f(x) = y, f(u) = v$.

Lemma 2.4. If S is a \mathcal{B}_X-normal constant-free semigroup then each f in S has an infinite range.

Proof. Suppose $R(f)$ is finite. Then either $D(f)$ is finite and $\exists g \in S$ with $|D(g) \cap R(f)| = 1$ (by 2.1), or $\pi(f)$ contains an infinite subset A and $\exists q \in S$ with $R(f) \subseteq B \in \pi(q)$ (by 2.1). In either case S contains a constant map $(gf$ or $qf)$.

Proposition 2.5. Every \mathcal{B}_X-normal constant-free semigroup S is 2-transitive.

Proof. Take arbitrary ordered subsets $\{x, u\}$ and $\{y, v\}$ of X, $x \neq u, y \neq v$. We construct an f in S such that $f(x) = y$ and $f(u) = v$.

Firstly let x, y, u and v be distinct. Choose t in S with $t(x) = y$ (by 2.2) and let $z \in D(t) \setminus \{x, y, t^{-1}(x), t^{-1}(y)\}$ (if such z does not exist then $R(t) \subseteq \{x, y, t(y)\}$, a contradiction to 2.4). Let $g = (z, u)t(z, u)$ and $g(u) = (z, u)t(z) = w$ (here (z, u) denotes the permutation of X interchanging z and u and leaving all other elements of X fixed). Clearly $g(x) = y$, and if $w = v$, then $f = g$. If $w \neq v$, u then let $f = (v, w)g(v, w)$ (since $z \notin \{t^{-1}(x), t^{-1}(y)\}$, $w \neq x, y$, and this ensures $f(x) = y$).

Thus starting with $t \in S$, $t(x) = y$, we construct either the required f or a map g with $g(x) = y, g(u) = u$. Similarly, starting with $s \in S$, $s(u) = v$, we can construct either the required f or a map q with $q(u) = v, q(x) = x$. In the latter case we let $f = (u, v)g(u, v)q$.

Now assume that x, y, u and v are not all distinct. Choose a and b in $X \setminus \{x, y, u, v\}$, $a \neq b$, and with the aid of the first part of the proof construct $r, s \in S$ with $r(x) = a, r(u) = b$ and $s(a) = y, s(b) = v$. Then $f = sr$ is the required map.

3. **Left ideals and automorphisms.** Let S be a non-trivial \mathcal{B}_X-normal constant-free semigroup. If $S \subseteq \mathcal{T}_X$, then $\text{Aut} S = \text{Inn} S$ [3]. Hence we assume that S contains a proper partial transformation and show that all automorphisms of S are inner.
Definition 3.1. Given distinct \(f, g \in S \) let

\[\mathcal{L}(f, g) = \{ l \in S : lf = lg \} \]

Then \(\mathcal{L}(f, g) \) is a left ideal of \(S \), which we call a function left ideal.

We will show in 3.12 that there always exist \(f, g \in S \) with \(\mathcal{L}(f, g) \neq \{ \Phi \} \). However, \(\mathcal{L}(f, g) \) may consist of the empty map. Let \(S \), for example, be the semigroup of all 1-1, onto transformations \(f \) with \(|X \setminus D(f)| = |X| \). Choose an \(f \) in \(S \). Clearly \(X \setminus D(f) \in D(S) \), and so we can choose a \(g \) in \(S \) with \(D(g) = X \setminus D(f) \). Then \(\mathcal{L}(f, g) = \{ \Phi \} \), because for any \(l \in S \), \(lf = lg \) implies

\[D(f) \supseteq D(lf) = D(lg) \subseteq D(g) = X \setminus D(f), \]

so \(lg = \Phi \). But then \(D(l) \cap X = D(l) \cap R(g) = \Phi \), the empty set. Thus \(l = \Phi \).

If \(\phi \in \text{Aut} \ S \), then for any \(f, g \in S \)

\[\phi(\mathcal{L}(f, g)) = \phi(\{ l \in S : lf = lg \}) = \{ l' \in S : l' \phi(f) = l' \phi(g) \} = \mathcal{L}(\phi(f), \phi(g)). \]

Similar equality holds for \(\phi^{-1} \in \text{Aut} \ S \) and we deduce the following result.

Lemma 3.2. Any \(\phi \in \text{Aut} \ S \) permutes function left ideals and \(\phi(\mathcal{L}(f, g)) = \mathcal{L}(\phi(f), \phi(g)). \)

Our aim is to translate the definition of \(\mathcal{L}(f, g) \) from the language of transformations to the language of subsets of \(X \) (Proposition 3.11), and to obtain a bijection of \(X \) associated with \(\phi \), specifically, with the permutation of function left ideals by \(\phi \).

Definition 3.3. Let \(x \in X \) and

\[\mathcal{L}(x) = \{ l \in S : x \in X \setminus D(l) \}. \]

Then \(\mathcal{L}(x) \) is a left ideal of \(S \), which we call a point left ideal.

Notice that since \(S \) contains a proper partial transformation, 2.1 ensures that \(\mathcal{L}(x) \neq \Phi \), for any \(x \in X \).

Lemma 3.4. Given \(x, y \in X \) the following three statements are equivalent:

(i) \(\mathcal{L}(x) \subseteq \mathcal{L}(y) \);
(ii) \(x = y \);
(iii) \(\mathcal{L}(x) = \mathcal{L}(y) \).

Proof. Implications (ii) \(\Rightarrow \) (iii) and (iii) \(\Rightarrow \) (i) are trivial. To show (i) \(\Rightarrow \) (ii) assume \(x \neq y \), and choose, by 2.1, an \(A \in D(S) \) with \(x \in A' \) (\(= X \setminus A \), \(y \in A \). If \(f \in S \) with \(D(f) = A \), then \(f \in \mathcal{L}(x) \setminus \mathcal{L}(y) \), proving (i) \(\Rightarrow \) (ii).

Define a map \(\theta : X \to \{ \mathcal{L}(x) : x \in X \} \) via \(\theta(x) = \mathcal{L}(x) \), for each \(x \in X \). Clearly \(\theta \) is onto and 3.4 ensures \(\theta \) is 1-1. Hence the next lemma.

Lemma 3.5. \(\theta \) is a bijection.

Let \(\mathcal{P}_2 \) be the set of all doubletons \(\{ a, b \} \) in \(X \), \(a \neq b \).
DEFINITION 3.6. Given \(A \in \mathcal{P}_2 \), \(A = \{a, b\} \), let
\[
L(A) = \{l \in S : l(a) = l(b)\},
\]
\[
\mathcal{L}(A) = L(A) \cup (L(a) \cap L(b)).
\]
Then \(\mathcal{L}(A) \) is a left ideal of \(S \) which we call a set left ideal.

REMARK. It is convenient to extend Definitions 3.3 and 3.6 by letting
\[
\mathcal{L}(\Phi) = S.
\]

Recall that \(\pi(S) \) is normal for \(\mathcal{J}_X \)-normal \(S \) (Lemma 2.1). Thus \(L(A) = \Phi \) for some \(A \in \mathcal{P}_2 \) if and only if \(L(A) = \Phi \) for all \(A \in \mathcal{P}_2 \), i.e. if and only if \(S \subseteq \mathcal{J}_X \). If \(S \subseteq \mathcal{J}_X \) then \(\mathcal{L}(A) = L(a) \cap L(b) \) \((a, b \in A)\) is a degenerate set left ideal. The next lemma reveals that for any \(A = \{a, b\} \in \mathcal{P}_2 \), \(\mathcal{L}(a) \cap \mathcal{L}(b) \neq \Phi \), ensuring that \(\mathcal{L}(A) \neq \Phi \).

LEMMA 3.7. There exists an \(A \) in \(D(S) \) with \(|A'| \geq 2\).

Proof. Choose a proper partial transformation \(f \) in \(S \) and let \(x \in X \setminus D(f) \), \(y \in D(f) \), \(f(y) = z \). Take \(g \) in \(S \) with \(z \in X \setminus D(g) \) (by 2.1) and let \(t = gf \). Then \(x, y \in X \setminus D(t) \) and we let \(A = D(t) \).

REMARK 3.8. By applying the arguments of the proof of Lemma 3.7 to the map \(t \) instead of \(f \) it is easy to produce an \(A \in D(S) \) with \(|A'| \geq 3\).

LEMMA 3.9. Given \(A \) and \(B \) in \(\mathcal{P}_2 \), the following three statements are equivalent:

(i) \(\mathcal{L}(A) \subseteq \mathcal{L}(B) \);
(ii) \(A = B \);
(iii) \(\mathcal{L}(A) = \mathcal{L}(B) \).

Proof. Implications (ii) \(\Rightarrow \) (iii) and (iii) \(\Rightarrow \) (i) are trivial. We show (i) \(\Rightarrow \) (ii). Assume \(x \in B \setminus A \) and let \(C = (A \cup B) \setminus \{x\} \). Clearly, \(|C| \leq 3\). Using Remark 3.8 and the normality of \(D(S) \) (see 2.1) choose an \(f \) in \(S \) with \(x \in D(f) \) and \(C \subseteq X \setminus D(f) \). Then \(f \in \mathcal{L}(A) \setminus \mathcal{L}(B) \), so \(\mathcal{L}(A) \nsubseteq \mathcal{L}(B) \), proving (i) \(\Rightarrow \) (ii).

NOTATION 3.10. Given \(f \) and \(g \) in \(S \), let
\[
\Delta(f, g) = f(D(f) \setminus D(g)) \cup g(D(g) \setminus D(f)),
\]
\[
\bowtie(f, g) = \{ (f(x), g(x)) : x \in D(f) \cap D(g), f(x) \neq g(x) \}.
\]

PROPOSITION 3.11. Let \(f, g \in S \) with \(f \neq g \) and \(\mathcal{L}(f, g) \neq \{\Phi\} \). Then
\[
\mathcal{L}(f, g) = \left(\bigcap_{x \in \Delta(f, g)} \mathcal{L}(x) \right) \cap \left(\bigcap_{A \in \bowtie(f, g)} \mathcal{L}(A) \right).
\]

Proof. Let \(l \in \mathcal{L}(f, g) \), \(x \in \Delta(f, g) \) and without loss of generality let \(f(y) = x \) for some \(y \in D(f) \setminus D(g) \) (Notation 3.10). If \(x \in D(l) \), then \(lf = lg \) implies that \(lf(y) = lg(y) \), and so \(y \in D(g) \), a contradiction. Thus \(x \notin D(l) \) and
\[
l \in \mathcal{L}(x).
\]
Now let \(A \in \mathcal{D}(f, g) \), \(A = \{ f(z), g(z) \} \). Then either \(l \in \mathcal{L}(f(z)) \cap \mathcal{L}(g(z)) \), or \(A \cap D(l) \neq \emptyset \), and \(lf = lg \) implies \(lf(z) = lg(z) \), whence \(l \in L(A) \). We conclude that

\[
l \in L(A). \tag{2}
\]

Since (1) and (2) hold for all \(x \in \Delta(f, g) \) and \(A \in \mathcal{D}(f, g) \), we deduce that

\[
\mathcal{L}(f, g) \subseteq \left(\bigcap_{x \in \Delta(f, g)} \mathcal{L}(x) \right) \cap \left(\bigcap_{A \in \mathcal{D}(f, g)} \mathcal{L}(A) \right).
\]

Conversely, let

\[
l \in \left(\bigcap_{x \in \Delta(f, g)} \mathcal{L}(x) \right) \cap \left(\bigcap_{A \in \mathcal{D}(f, g)} \mathcal{L}(A) \right).
\]

Firstly observe that

\[
D(lf) = D(lg). \tag{3}
\]

Indeed, assume that \(z \in D(lf) \setminus D(lg) \). Then \(z \in D(g) \) (otherwise \(f(z) \in \Delta(f, g) \)) and so \(l \in \mathcal{L}(f(z)) \), implying \(z \notin D(lf) \). Now \(f(z) \neq g(z) \) means that \(\{ f(z), g(z) \} = A \in \mathcal{D}(f, g) \), and so \(l \in \mathcal{L}(A) \). Since \(g(z) \notin D(l) \), we must also have that \(f(z) \notin D(l) \), or \(z \notin D(lf) \), a contradiction which proves (3).

Now take \(z \in D(lf) = D(lg) \). If \(f(z) = g(z) \), then certainly \(lf(z) = lg(z) \). If \(f(z) \neq g(z) \), then \(\{ f(z), g(z) \} = A \in \mathcal{D}(f, g) \). Since \(l \in \mathcal{L}(A) \) and \(A \subseteq D(l) \) we conclude that \(l \in L(A) \), or \(l \notin \mathcal{L}(f, g) \).

Proposition 3.12. Given an \(A \) in \(\mathcal{P}_2 \) and an \(x \) in \(X \) there exist \(f, g, p \) and \(q \) in \(S \) such that

\[
\mathcal{L}(A) = \mathcal{L}(f, g), \quad \mathcal{L}(x) = \mathcal{L}(p, q)
\]

and there is a \(k \) in \(S \) such that \(p = kf \), \(q = kg \).

Proof. Take an \(A \) in \(\mathcal{P}_2 \). On account of Proposition 3.11 it is sufficient to construct \(f \) and \(g \) such that \(D(f) = D(g) \) (and hence \(\Delta(f, g) = \emptyset \)) and \(\mathcal{D}(f, g) = \{ A \} \). Choose \(t \in S \) with \(A \subseteq X \setminus D(t) \) (by 3.7) and let \(c, d \in R(t) \), where \(c \neq d \) (note that \(S \) is constant-free). Let \(A = \{ a, b \} \) and \(s \in S \) take \(c \) to \(a \) and \(d \) to \(b \) (see 2.5). Then \(f = st \) and \(g = (a, b)f(a, b) = (a, b)f \) are the required transformations with \(\mathcal{L}(f, g) = \mathcal{L}(A) \).

Now let \(x \in X \) and choose \(k \in S \) such that \(k(a) = x \) and \(b \in X \setminus D(k) \). (To construct such \(k \) choose by 2.1 a map \(q \) in \(S \) with \(a \in D(q) \) and \(b \in X \setminus D(q) \), by 2.2 a map \(p \) in \(S \) which takes \(q(a) \) to \(x \), and let \(k = pq \).) It is easy to check that \(\mathcal{D}(kf, kg) = \emptyset \) and \(\Delta(kf, kg) = \{ x \} \), whence 3.11 ensures that \(\mathcal{L}(kf, kg) = \mathcal{L}(x) \). We let \(p = kf \), \(q = kg \).

We will show (Proposition 3.14) that each maximal function left ideal of \(S \) is either a point left ideal or a non-degenerate set left ideal, and these exhaust all maximal function left ideals.
LEMMA 3.13. For all \(A \) in \(\mathcal{P}_2 \) and \(x \) in \(X \):

(i) \(\mathcal{L}(x) \notin \mathcal{L}(A) \),

(ii) \(\mathcal{L}(A) \subseteq \mathcal{L}(x) \) implies \(\mathcal{L}(A) \) is degenerate.

Proof. (i) Let \(A = \{ a, b \} \) and assume that \(a \neq x \). With the aid of Lemmas 2.1 and 3.7 choose a \(B \in D(S) \) with \(a \in B \) and \(b, x \in B' \), together with \(f \in S \) such that \(D(f) = B \). Then \(f \in \mathcal{L}(x) \setminus \mathcal{L}(A) \).

(ii) If \(\mathcal{L}(A) = L(A) \cup (\mathcal{L}(a) \cap \mathcal{L}(b)) \subseteq \mathcal{L}(x) \), then \(L(A) \subseteq \mathcal{L}(x) \). Assume \(\mathcal{L}(A) \neq \Phi \), then \(x \notin A \) and each \(g \) such that \(A \cup \{ x \} \subseteq D(g) \) and \(g(a) = g(b) \) (chosen by Lemma 2.1) is in \(L(A) \setminus \mathcal{L}(x) \). Thus \(L(A) = \Phi \), and so \(\mathcal{L}(A) \) is degenerate.

PROPOSITION 3.14. Let \(f, g \in S \). Then \(\mathcal{L}(f, g) \) is a maximal function left ideal if and only if either \(\mathcal{L}(f, g) = \mathcal{L}(x) \), \(x \in X \), or \(\mathcal{L}(f, g) = \mathcal{L}(A) \), where \(\mathcal{L}(A) \) is non-degenerate, \(A \in \mathcal{P}_2 \).

Proof. Firstly, assume that \(\mathcal{L}(f, g) \) is a maximal function left ideal. Let \(x \in \Delta(f, g) \).

By 3.12 there exist \(p, q \in S \) such that \(\mathcal{L}(p, q) = \mathcal{L}(x) \). Hence \(\mathcal{L}(f, g) \subseteq \mathcal{L}(x) = \mathcal{L}(p, q) \) (by 3.11). The maximality of \(\mathcal{L}(f, g) \) implies

\[
\mathcal{L}(f, g) = \mathcal{L}(x) = \mathcal{L}(p, q).
\]

Similarly, if \(A \in D(f, g) \) then there are also \(t, s \in S \) with \(\mathcal{L}(t, s) = \mathcal{L}(A) \) (by 3.12) and \(\mathcal{L}(f, g) \subseteq \mathcal{L}(A) = \mathcal{L}(t, s) \) (by 3.11), implying that

\[
\mathcal{L}(f, g) = \mathcal{L}(A) = \mathcal{L}(t, s),
\]

because of the maximality of \(\mathcal{L}(f, g) \). Suppose \(\mathcal{L}(A) \) is degenerate, then for \(a \in A \), by 3.4,

\[
\mathcal{L}(f, g) = \mathcal{L}(A) \subseteq \mathcal{L}(a) = \mathcal{L}(l, r),
\]

for some \(l, r \in S \) (by 3.12), a contradiction to the maximality of \(\mathcal{L}(f, g) \).

For the converse, assume that \(\mathcal{L}(f, g) = \mathcal{L}(x) \), for some \(x \in X \). To show that \(\mathcal{L}(f, g) \) is maximal suppose that there are \(p, q \in S \) with \(\mathcal{L}(p, q) \supseteq \mathcal{L}(f, g) \), that is, by 3.11,

\[
\mathcal{L}(x) = \mathcal{L}(f, g) \subseteq \mathcal{L}(p, q) = \left(\bigcap_{y \in \Delta(p, q)} \mathcal{L}(y) \right) \cap \left(\bigcap_{B \in D(p, q)} \mathcal{L}(B) \right). \tag{4}
\]

If \(D(p, q) \neq \Phi \), then \(\mathcal{L}(x) \subseteq \mathcal{L}(B) \), for every \(B \in D(p, q) \), contradicting 3.13(i). Thus \(D(p, q) \) is empty and, for every \(y \in \Delta(p, q) \), \(\mathcal{L}(x) \subseteq \mathcal{L}(y) \). Lemma 3.4 ensures that \(\Delta(p, q) = \{ x \} \) and we deduce from (4) that \(\mathcal{L}(f, g) = \mathcal{L}(p, q) \).

Finally assume that \(\mathcal{L}(f, g) = \mathcal{L}(A) \), \(A \in \mathcal{P}_2 \), and \(\mathcal{L}(A) \) is non-degenerate. If \(\mathcal{L}(f, g) \subseteq \mathcal{L}(t, s) \) for \(t, s \in S \), then 3.11 implies

\[
\mathcal{L}(A) = \mathcal{L}(f, g) \subseteq \mathcal{L}(t, s) = \left(\bigcap_{z \in \Delta(t, s)} \mathcal{L}(z) \right) \cap \left(\bigcap_{C \in D(p, q)} \mathcal{L}(C) \right). \tag{5}
\]

If \(\Delta(t, s) \neq \Phi \), then \(\mathcal{L}(A) \subseteq \mathcal{L}(z) \), for each \(z \in \Delta(t, s) \), contradicting 3.13(ii). Hence
\[\Delta(t, s) = \Phi \text{ and, for each } C \in \mathcal{D}(p, q), \mathcal{L}(A) \subseteq \mathcal{L}(C). \] Thus \(\mathcal{D}(p, q) = \{ A \} \) (3.9) and we deduce from (5) that \(\mathcal{L}(f, g) = \mathcal{L}(t, s) \).

It is clear from 3.2 that each automorphism \(\phi \) of \(S \) permutes maximal function left ideals. Our aim is to show that \(\phi \) also permutes point left ideals. If all the set left ideals are degenerate, that is \(S \subseteq \mathcal{I}_x \), then, as the above proposition reveals, the point left ideals are the only maximal function left ideals. In the next proposition we formulate a property which distinguishes the non-degenerate set left ideals and is preserved under \(\phi \).

Proposition 3.15. Let \(S \notin \mathcal{I}_x \) and \(\mathcal{L}(f, g) \) be a maximal function left ideal. Then \(\mathcal{L}(f, g) \) is a set left ideal if and only if

\[\forall \text{ maximal function left ideal } L \exists k \in S \text{ such that } \mathcal{L}(kf, kg) = L. \quad (6) \]

Proof. Assume firstly that \(\mathcal{L}(f, g) = \mathcal{L}(A) \) (non-degenerate), \(A = \{ a, b \} \in \mathcal{P}_2 \). We show that (6) holds. If \(L = \mathcal{L}(x) \), for some \(x \in X \), then we appeal to Lemma 3.12. Hence assume \(L = \mathcal{L}(B) \), for some \(B \in \mathcal{P}_2 \). Choose \(k \in S \) mapping \(A \) onto \(B \) (by 2.5). Then \(D(kf) = D(kg) \) and so \(\Delta(kf, kg) = \Phi \). (Indeed, assume, for example, that \(u \in D(kf) \setminus D(kg) \). Then \(u \in D(f) = D(g) \), since \(\Delta(f, g) = \Phi \), by 3.11 and 3.13(ii), \(f(u) \in D(k) \) and \(g(u) \notin D(k) \). Thus \(f(u) \neq g(u) \), so that by Lemma 3.9 \(\{ f(u), g(u) \} = A \) and \(\Delta(f, g) = \Phi \), a contradiction.) Also, \(D(kf, kg) = \{ B \} \), since \(kf(u) \neq kg(u) \), for some \(u \in D(kf) \), implies that \(f(u) \neq g(u) \), or \(\{ f(u), g(u) \} = A \), again by 3.9, and so by the choice of \(k \), \(\{ kf(u), kg(u) \} = B \). Proposition 3.11 ensures that \(\mathcal{L}(kf, kg) = \mathcal{L}(B) \), proving (6).

For the converse, assume that \(\mathcal{L}(f, g) \) satisfies (6) and is a point left ideal \(\mathcal{L}(x) \) (Proposition 3.14). Let \(L = \mathcal{L}(A) \), \(A = \{ a, b \} \in \mathcal{P}_2 \), be a non-degenerate set left ideal (recall, \(S \notin \mathcal{I}_x \)), and \(k \in S \) be such that \(\mathcal{L}(kf, kg) = \mathcal{L}(A) \). Then by 3.11 and 3.13(ii), \(\Delta(kf, kg) = \Phi \), that is \(D(kf) = D(kg) \). Since \(\mathcal{L}(fg) = \mathcal{L}(x) \), it follows from 3.11 and 3.13(i) that \(\Delta(f, g) = \Phi \). Assume without loss of generality that \(x = f(y) \), where \(y \in D(f) \setminus D(g) \). If \(x \in D(k) \), then \(y \in D(kf) = D(kg) \subseteq D(g) \), a contradiction. Hence \(x \notin D(k) \) and so \(k \in \mathcal{L}(x) \), which means that \(kf = kg \), a contradiction to the assumption that \(\mathcal{L}(kf, kg) = \mathcal{L}(A) \).

Proposition 3.16. Let \(\phi \in \text{Aut } S \). Given \(x \in X \) there exists \(y \in X \) such that \(\phi(\mathcal{L}(x)) = \mathcal{L}(y) \).

Proof. Let \(x \in X \) and choose \(f, g \in S \) with \(\mathcal{L}(f, g) = \mathcal{L}(x) \) (by 3.12). Proposition 3.14 ensures that \(\mathcal{L}(f, g) \) is a maximal function left ideal. Whence

\[\phi(\mathcal{L}(x)) = \phi(\mathcal{L}(f, g)) = \mathcal{L}(\phi(f), \phi(g)) \quad (by \ 3.2) \]

is a maximal function left ideal. If \(S \) contains only degenerate set left ideals then \(\mathcal{L}(\phi(f), \phi(g)) = \mathcal{L}(y) \) as required. Hence assume that there are non-degenerate set left ideals. Since \(\mathcal{L}(f, g) = \mathcal{L}(x) \), by 3.15 there exists a maximal function left ideal \(L \) such that for any \(k \in S \), \(\mathcal{L}(kf, kg) \neq L \), or for any \(k' \in S \), \(\mathcal{L}(k' \phi(f), k' \phi(g)) \neq \phi(L) \). With the aid of 3.2 we deduce that \(\phi(L) \) is a maximal function left ideal. Then 3.15 ensures that \(\mathcal{L}(\phi(f), \phi(g)) = \mathcal{L}(y) \), for some \(y \in X \).
Using the above proposition define a map

$$\eta: \{L(x): x \in X\} \to \{L(x): x \in X\} \quad \text{via} \quad \eta(L(x)) = \phi(L(x)), $$

for each $L(x)$. Similarly, by considering the automorphism ϕ^{-1}, define a map

$$\xi: \{L(x): x \in X\} \to \{L(x): x \in X\} \quad \text{via} \quad \xi(L(x)) = \phi^{-1}(L(x)).$$

Certainly ξ is the inverse of η and so we have proved the following.

Lemma 3.17. η is a bijection.

By Lemma 3.4, $L(x) = L(y)$ if and only if $x = y$ ($x, y \in X$). We can therefore now define a map $h: X \to X$ by $h(x) = y$, where y is given by $\eta(L(x)) = L(y)$, for $x \in X$. Thus, with the notation of 3.5,

$$h = \theta^{-1}\eta\theta.$$

By 3.17, h is a bijection; that is, $h \in G_X$. We call h the bijection associated with ϕ.

Now we will prove the main result of this paper.

Theorem 3.18. If S is a G_x-normal subsemigroup of P_X, then $\text{Aut } S = \text{Inn } S$.

Proof. If S consists of total transformations we appeal to [3, Theorem 1.1]. If S contains a constant map, the result is given in [11, Theorem 2]. Thus we assume that S is a constant-free semigroup containing a proper partial transformation, and so $L(x) \neq \Phi$ for every $x \in X$.

Take $f \in S$, $x \in D(f)$ and let $f(x) = y$. Since $f \notin L(x)$, also $\phi(f) \notin \eta(L(x)) = L(h(x))$, where h is the bijection associated with ϕ. Hence $h(x) \in D(\phi(f))$.

Now observe that for any k in $L(y)$, $kf \in L(x)$, hence for any k' in $L(h(y))$, $k' \phi(f) \in L(h(x))$. Let $\phi(f)h(x) = z$. If $z \neq h(y)$, we can always choose k' in $L(h(y))$ with $z \in D(k')$ (Lemma 2.1). But then $k'\phi(f) \notin L(h(x))$, a contradiction which shows that $z = h(y)$. Thus

$$\phi(f)h(x) = h(y) = hf(x).$$

Since this is true for all x in $D(f)$, we conclude that

$$\phi(f) = hfh^{-1},$$

and, since f is an arbitrary element of S, the result follows.

References

