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Abstract 

Intraguild interactions affect population and community structure through a combination of 

competition and predation.  Changes in size structure influence intraguild interactions by 

affecting the strength and direction of these species’ interactions. I tested for size-structured 

intraguild interactions in temporary pond ecosystems between marbled salamanders (Ambystoma 

opacum) and tiger salamanders (Ambystoma tigrinum) using an outdoor mesocosm experiment.  

I hypothesized that 1) A. opacum survivorship and growth would be negatively impacted when 

both species start at a similar size because tiger salamanders grow faster and are more aggressive 

2) A. tigrinum will grow slower and have lower survivorship when they occur with large A.

opacum because A. opacum will outcompete A. tigrinum and prey upon them. There was no 

support for the second hypothesis, A. tigrinum grew and survived the same regardless of A. 

opacum size.  However, I found support for the first hypothesis. Small A. opacum mortality was 

greatest when they occurred with small A. tigrinum suggesting changes in size structure resulting 

in these two species occurring together at similar sizes will negatively impact A. opacum 

populations through intraguild predation. Climate change will likely affect the distribution and 

abundance of species in temporary pond ecosystems and influence size-structured interactions 

that impact population and community structure.  

Index words: amphibian larvae survivorship, mesocosm, intraguild predation, size-structure 
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 INTRODUCTION 

Communities are structured by a variety of abiotic and biotic factors. These factors 

interact in complex ways to influence population growth and community composition (Wilber, 

1987, Wellborn et al. 1996, Peacor & Werner, 2000, Zalfman et al., 2017). Among biotic factors, 

intraguild interactions affect community composition through competition for shared resources 

and predation between and within species (Holt & Polis 1997, Polis et al. 1998, Should 1997 

citation go before 1998 citation?). For example, in a simple intraguild food web, an intermediate 

predator competes with a top predator for a shared resource, but the intermediate predator also 

gets eaten by the top predator. Models predict that the outcome of these interactions can depend 

on which species is a better competitor (Polis et al. 1998). The two predators are predicted to 

coexist when the intermediate predator is a better competitor than the top predator for the shared 

resource; otherwise, the top predator will exclude the intermediate predator (Polis & Holt 1992, 

Vance-Chalcraft et al. 2007) Coexistence could also occur if there is an abundance of resources 

or the top predator was not effective at consuming the intermediate predator, assuming the 

intermediate predator remains the superior competitor.  

         Size structure of the top and intermediate predators influences the outcome of intraguild 

interactions (Wissinger 1992, Boone et al., 2002, Crumrine 2005, Sours & Petranka 2007, 

Rudolf & Armstrong 2008).  Different size classes (or developmental stages) of top predators 

have different effects on intermediate predators (Yurewicz, 2004, Hawley, 2009, Anderson et al. 

2013, Carter et al. 2018). For example, large top predators tend to eat more intermediate 

predators than small top predators (Crumrine 2005). Size-structured populations of top predators 
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might mitigate predation on intermediate predators if top predators are large enough to eat 

smaller conspecifics (i.e., cannibalism; Rudolf & Armstrong 2008). Top predators also have the 

opportunity to consume more intermediate predators than the shared prey species (Yurewicz, 

2004). The different outcomes reveal the importance of size in affecting community composition 

(Yurewicz, 2004, Crumrine,2005, Rudolf & Armstrong 2008).  

Abiotic parameters like temperature, water permanence, and seasonal predictability can 

also affect intraguild interactions (Todd et al., 2011, Lund et al., 2016, Zalfman et al., 2017). For 

example, variation in temperature shifts communities to different latitudes and elevations in 

search of conditions that meet their physiological needs (Kelly & Goulden, 2008, Zellweger et 

al. 2017). These range shifts lead to novel species interactions as species assimilate into existing 

communities at higher latitudes or altitudes (Lurgi et al. 2012, Barley et al. 2019, Shepard et al. 

2021). In some cases, species shift to habitats with historically longer hydroperiods because of 

changes in rainfall patterns that produce novel intraguild interactions that negatively affect 

resident species (Shepard et al., 2021). Temperature variation can induce changes in life-history 

switch points like breeding time (Beebee, 1995, Gibbs & Breisch, 2001, Todd et al.,2011). For 

example, in response to warmer temperatures the southern chorus frog (Pseudacris nigrita) 

breeds later in the winter leading to an overlap in pond use with the spring-breeding western 

chorus frog (P. triseriata) that negatively affects the southern chorus frog because of the change 

in size structure (Rudolf & Singh, 2013). 

Temporary ponds are a model system to test for the effects of size structure on intraguild 

interactions. The communities that develop in these systems are often size-structured and 

intraguild predation is an important component structuring communities (Sours & Petranka, 

2007, Hawley, 2009, Anderson et al., 2013). Many species that occupy temporary ponds use 
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temperature and rainfall as cues to change development (Petranka, 1998, Shepard et al. 2021). 

For example, warmer temperatures lead to amphibians that breed earlier in the spring (Beebee 

1995, Gibbs & Breisch 2001, Todd et al. 2011) and fall-breeding amphibians that breed later in 

the fall (Todd et al. 2011, Rudolf & Singh, 2013). These shifts in breeding time have the 

potential to affect predator-prey interactions and competition for resources because the size 

structure of larval populations within these systems changes.  

In this study, I considered the consequences of changing size structure on the intraguild 

interactions between the fall-breeding marbled salamander (Ambystoma opacum) and the spring-

breeding tiger salamander (Ambystoma tigrinum). Both of these species shift their breeding time 

response to temperature such that A. opacum breeds later in the fall and A. tigrinum breeds 

earlier in the spring (Todd et al., 2011). I conducted a mesocosm experiment that manipulated 

the size structure of these two species to better understand how breeding time might affect 

species interactions between these two species I hypothesized that 1) A. opacum survivorship and 

growth would be negatively impacted by a shift in size structure that resulted in small individuals 

of both species occupying the pond at the same time and 2) A. tigrinum should grow slower and 

have lower survivorship when large A. opacum coexist with small A. tigrinum. 

 

METHODS 

Study System 

The range of A. opacum and A. tigrinum overlap in temporary ponds of the coastal plain 

in the U.S.A. (Gibbons & Semlitsch,1991, Whiteman et.al., 1995, Petranka, 1998, Todd, 2011). 

Currently, A. opacum is more common in Georgia, and the range of A. tigrinum is much smaller 

(Jensen, 2008). Both species are voracious predators as larvae and therefore compete for 
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resources (Petranka,1998). Ambystoma opacum lays eggs in the fall in dry areas of temporary 

ponds (Petranka, 1990). The eggs hatch as the pond fills, enabling them to be among the first 

temporary pond residents. They encounter few competitors or predators and few resources and 

consequently grow slowly (3–6-month larval period). If ponds do not fill or the mother leaves, 

eggs risk desiccation, freezing, and fungal or algal infections (Petranka, 1990). Conversely, A. 

tigrinum lays eggs in the spring after ponds fill and the eggs hatch in an environment with more 

competitors and predators, but also many resources enabling them to grow quickly with a range 

of development from 2-4 months (Petranka,1998; Jensen, 2008). Therefore, historically A. 

opacum has a head start on A. tigrinum enabling them to have a size advantage in size-structured 

species interactions. 

         

 Experimental design 

I used a substitutive design of five treatments arranged in four replicate spatial blocks to 

test for the effects of size structure on intraguild interactions. Treatments were randomized 

within each block and included eight small A. opacum alone, eight large A. opacum alone, eight 

small A. tigrinum alone, four small A. opacum with four small A. tigrinum together, and four 

large A. opacum with four small A. tigrinum together. The treatment with large A. opacum and 

small A. tigrinum represented the size structure of these two species when the two species have 

greater differences in their breeding times, while the treatment with A. opacum and A. tigrinum 

of the same size represent size structure when the two species breed closer to the same time 

(Fig.1). 
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Salamander capture and rearing 

Salamander larvae were collected from the Savanah River Ecology Lab in Aiken, South 

Carolina where A. opacum and A. tigrinum co-occur in the same pond ecosystems (Gibbons & 

Semlitsch,1991, Todd, 2011). Small A. opacum were hatched into plastic containers in the lab 

from 5 clutches by flooding the clutches on 9 February 2021 with pond water. The clutches were 

originally split at the beginning to control for genetic diversity, but due to widespread mortality, 

the clutches were haphazardly combined to have enough individuals for the experiment. Small A. 

opacum (1.72 ± 0.025 cm, mean ± SE) were maintained in the lab in 76-l aerated aquaria with 

brine shrimp and weekly water changes. Large A. opacum (3.44 ± 0.079 cm, mean ±SE) were 

collected from temporary ponds on 12 March, transported to the lab, and kept as above but were 

fed mosquito larvae instead. Ambystoma tigrinum eggs were collected from temporary ponds on 

10 March and then hatched in large mesocosms during the next week at the Savanah River 

Ecology site before being transported to Columbus State University on 12 March where they 

were maintained as above (1.72 ± 0.029 cm, mean ±SE). There were no size differences in larval 

salamanders within the same size treatment and species at the start of the experiment: small A. 

opacum (F11,52 = 0.297; P = 0.984), large A. opacum (F10, 49 = 0.687; P = 0.731), and small A. 

tigrinum (F8,39 = 0.037; P = 0.517). All of the salamander larvae were randomly assigned to a 

treatment and added to experimental tanks on 5 April 2021(Day 1). 

 

Mesocosm Set up 

Mesocosms were filled with 375-l of well water, 100 grams of oak leaf litter, 4-g of 

rabbit chow, and 6-l of zooplankton from the Savannah River Ecology Lab (the amount of rabbit 

chow was based on Wilber, 1987). The zooplankton water was filtered through two screens, this 
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prevented large carnivorous water beetles or dragonfly larvae from entering into the mesocosms. 

Mesocosms were covered with screens on both the top and the standpipe to prevent colonization 

by other organisms. Once salamanders were added, 6-l of zooplankton from a nearby wetland 

was added to each mesocosm every week.   

I instituted a drying regime of 3-cm a week starting on 24 May (Day 49) and ending on 

23 June (Day 79). This drying regime was based on temporary pond ecosystems at the Savanah 

River site where salamanders were collected.  Many of these ponds, especially those with open 

canopies dry quickly and are typically dry by the end of June. (Gibbons & Semlitsch,1991, Scott, 

unpublished). The water level started at 28 cm and ended at 13 cm  

Salamander measuring 

Initial salamander length was measured by putting individuals into a clear plastic box 

with dividers that held a single salamander. The box was placed on a copy stand equipped with a 

Canon EOS REBEL T3i and 50mm F-3.5 prime lens that was used to capture images of each 

salamander that were processed using Image J (Schneider et al., 2012). Each salamander was 

measured from the tip of its tail to the tip of the snout three times and then the average was taken 

to the nearest tenth of a centimeter.  Instead of snout-to-vent length, total length was used 

because it was less invasive and had less risk of mortality when measuring small larval 

salamanders with delicate gills.  

I caught metamorphosed salamanders with a net before 7 May and used minnow traps 

thereafter that were placed halfway underwater to prevent drowning. Minnow traps were 

checked daily to prevent mortality. Metamorphosed salamanders were captured and taken back 

to the lab where the total length (cm) and mass (g) were taken. The length was recorded as above 

and mass was taken by blotting the salamander dry on a paper towel before recording the mass 
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using a semi-micro balance (Sartorius CPA225D). Metamorphosed salamanders were maintained 

on crickets and termites in an aquarium. 

Halfway through the experiment on 12 May (Day 37), larval salamanders were measured 

again as described above. Tanks were swept with large aquarium nets for 15 minutes in an 

attempt to capture salamanders. Although this may have disrupted intraguild interactions in the 

tanks for a short period, getting data on growth was critical for understanding salamander 

development. Since few salamanders were found on 12 May, especially in the treatment with 

small A. tigrinum and small A. opacum, the experiment was ended. On 23 June, all remaining 

larval salamanders, a total of 57, were collected at that time. The length of the remaining 

salamander larvae was recorded using the methods mentioned above. All salamanders were 

returned to the Savannah River Ecology Lab on 25 June.    

Analyses 

To understand the impact of size structure on the survivorship of A. opacum and A. 

tigrinum, I calculated the instantaneous mortality rate by dividing the number of surviving 

salamanders at the end of the experiment by the initial number of salamanders in each treatment. 

Then added one and log10 to transform the proportion (Billick & Case 1994, Ruehl et al. 2018).   

Differences in survivorship between A. opacum and A. tigrinum were determined by 

using planned contrasts. To determine the effect of size manipulation of A. opacum, I compared 

tanks with small individuals of both species (StSm) to tanks with small A. tigrinum and large A. 

opacum (StLm). Mortality between the mixed species treatments (StLm, StSm, Fig. 1) was 

compared to the control treatments (Lm, Sm, Fig.1) respectively to see if the differences in 

survivorship were due to A. tigrinum or intraspecific competition between A. opacum. Lastly, the 
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two control treatments Lm and Sm were compared to see if there was a difference in 

survivorship based on size. 

 Growth rate was calculated by subtracting the average length of salamanders within a 

tank according to species from the average starting length. Differences in salamander growth at 

the middle of the experiment were determined using a one-way ANCOVA with survivorship as 

the covariate. I tested for heterogeneity of slopes for the survivorship covariate by including an 

interaction term between treatment and survivorship and found no difference, so the interaction 

term was removed from the final model.  Growth data were analyzed for each species separately.  

To analyze the difference in the growth of A. opacum in the presence of A. tigrinum, based on 

size, the two experimental treatments (StLm, StSm) were compared using a planned contrast. 

The larval growth in the two experimental treatments (StLm, StSm, Fig. 1) was also compared to 

the control treatments (Lm, Sm, Fig. 1) respectively to see if the difference in growth was due to 

A. tigrinum or intraspecific competition among A. opacum. Lastly, the two control treatments 

Lm, Sm were compared to see if there was a difference in growth based on initial size 

differences of A. opacum. 

Growth differences of A. tigrinum larvae at the end of the experiment were determined 

using a one-way ANCOVA with survivorship as the covariate. I tested for heterogeneity of 

slopes for the covariate by including an interaction between treatment and survivorship and 

found no difference. The interaction term was removed from the final model. This analysis 

compared treatments St, StLm, and StSm together. Variation in the growth of A. opacum at the 

end of the experiment could be conducted because of low survivorship in treatments with small 

A. opacum and small A. tigrinum. 
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 Time to metamorphosis was calculated as the days from the start of the experiment to the 

date of metamorphosis for each metamorphosed salamander in the mesocosm and then taking the 

average. These averages were then analyzed using a one-way ANOVA that compared treatments 

Sm, Lm, and StLm together. The treatment StSm could not be included due to low survivorship 

in tanks with both species at the same size.  All analyses were conducted using JASP (Version 

0.14). 

 

RESULTS 

Mortality 

Mortality of A. opacum depended on their size when they occurred with A. tigrinum 

(StSm vs. StLm: t11=3.233; P= 0.008, Fig. 2).  Small A. opacum mortality was 80% greater than 

large A. opacum mortality when they resided with A. tigrinum (StLm vs. StSm). Mortality of 

large A. opacum did not depend on the occurrence of A. tigrinum (StLm vs Lm: t11=0.3; P 

=0.770). Between treatments of small A. opacum, mortality depended on the occurrence of A. 

tigrinum (StSm vs. Sm: t11= 3.046; P = 0.011). Small A. opacum had 60% more mortality when 

they occurred with A. tigrinum compared to they were with conspecifics. Mortality of A. 

tigrinum did not depend on the occurrence of A. opacum at either size or with other A. tigrinum 

(StSm vs. StLm vs. St: F2, 9= 0.03; P =0.971). There were no differences in mortality among 

single-species treatments (St vs. Sm vs. Lm: F2, 9= 0.150; P = 0.863, Fig. 2). 

Growth  

Small A. opacum growth was not different than large A. opacum growth when they 

occurred with A. tigrinum (StSm vs. StLm: t10=0.903; P = 0.388, Fig. 3). Small A. opacum grew 

faster than large A. opacum when they occurred alone (Sm vs Lm tanks: t10=2.847; P=0.017). 
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Growth of A. tigrinum did not depend on the occurrence of large or small A. opacum, or with 

other A. tigrinum (StSm vs. StLm vs. St: F2,7=0.32; P = 0.74, Fig. 3). Experiment-wide growth of 

A. tigrinum did not depend on the presence of A. opacum at either size or with conspecifics 

(StLm vs. StSm vs. St: F2,5= 2.38; P = 0.19). Overall A. tigrinum grew faster than A. opacum 

among all treatments (F1,24 = 48.794, P=<0.001). 

Time to metamorphosis 

Overall, 35 A. opacum metamorphosed. Out of these 35 salamanders, 17 large A. opacum 

larvae metamorphosed prior to the initiation of the drying treatment. Eighteen A. opacum went 

through metamorphosis after the drying treatment was initiated, six of them being small A. 

opacum. Out of the six small A. opacum that metamorphosed, only one of them was from the 

treatment that included small A. tigrinum, and that one represented one of the two surviving A. 

opacum. There was no difference in time to metamorphosis in A. opacum among treatments (Lm 

vs. Sm vs. StLm F2,7= 1.926; P = 0.216). Ambystoma tigrinum did not go through metamorphosis 

during the experiment.  

 

DISCUSSION 

I examined the potential outcomes of varying size structures on two species of larval 

salamanders that live in temporary ponds. Predation was asymmetric when the two species were 

similar sizes. Ambystoma tigrinum was the dominant predator resulting in strong partial 

intraguild interactions instead of the predicted full intraguild interactions (both species eating 

each other and competing) in StSm treatments. Conversely, we found no evidence of partial 

intraguild interactions between large A. opacum and A. tigrinum as predicted. Large A. opacum 

did not consume A. tigrinum suggesting that the only species interaction between these different 
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size classes was competition. There was no difference in survivorship of A. tigrinum among 

treatments (St vs. StLm vs. StSm) and they grew faster than A. opacum regardless of treatment 

suggesting that A. tigrinum is a superior intraguild predator to A. opacum. 

Breeding Phenology 

Changes in breeding time can impact size-structured interactions in pond communities. 

Ambystoma opacum typically breeds in the fall and A. tigrinum breeds in the spring resulting in 

nearly a two-fold difference in size (~1.7 cm difference) between the two species in ponds where 

they co-occur. This size advantage for A. opacum enables them to both avoid predation and feed 

on larger prey items, but comes with risks (Petranka, 1989, Scott, 1990, Boone et al., 2002).  

Ambystoma opacum females lay their eggs in the fall and guard them where they risk freezing, 

desiccation, and pathogen infections while they wait until the pond fills. (Petranka, 1998, Todd et 

al., 2011, Rudolf & Singh, 2013). Alternatively, A. tigrinum females avoid the many abiotic 

environmental risks by laying eggs after ponds fill but face greater competition for resources and 

threats of predation. Changes in temperature and the timing of rainfall will impact the relative 

success of these species over the years and affect intraguild interactions between them.     

I predicted that partial intraguild predation would impact survivorship in tanks with large 

A. opacum and small A. tigrinum larvae (StLm) because both would compete for the same 

resources and the large A. opacum would not be gape limited and therefore able to eat the smaller 

A. tigrinum (Crumrine 2005).  However, my findings did not support this prediction as A. 

tigrinum exhibited no difference in growth or survivorship when they occurred with large A. 

opacum (StLm vs. St). Moreover, A. tigrinum grew faster than A. opacum across all treatments 

(StLm vs. StSM vs. St). The lack of intraguild interactions between large A. opacum and small A. 

tigrinum is an important finding because it demonstrates that A. tigrinum can successfully avoid 
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predation by larger A. opacum and quickly grow into a size refuge from many other predators. 

These results also demonstrate the advantage that A. opacum has by arriving at ponds early and 

gaining a head start on development. In the treatment where both species were similar in size 

(StSm), A. opacum did not have a head start and A. tigrinum grew faster and gained a size 

advantage over A. opacum. Warmer temperatures and changes in rainfall patterns may shift the 

breeding time of A. opacum and A. tigrinum in ways that would result in the two species 

breeding closer together yielding aquatic communities with similarly sized individuals of both 

species that could negatively impact A. opacum but benefit A. tigrinum.   

My second prediction was that similar-sized A. opacum and A. tigrinum would compete 

for resources and eat each other. Behavioral studies show that A. opacum responds to the 

presence of similarly sized A. tigrinum by hiding in vegetation longer than when they occur with 

conspecifics, but that A. tigrinum does not change behavior when they occur with A. opacum 

(Brodman & Jaskula, 2002). Additionally, other studies indicate that cannibalistic morphs of A. 

tigrinum grow faster and result in a large size advantage over conspecifics and other salamander 

species (Holomuzki & Collins, 1981, Lannoo et al., 1989). In this study, I found evidence for 

partial intraguild predation between the two species where A. tigrinum drastically reduced A. 

opacum survivorship. Given these results, A. tigrinum larvae appear to be much better predators 

and competitors than A. opacum.  

Historically, A. opacum has enjoyed less competition for resources as they are among the 

first inhabitants of temporary ponds (Boone et al. 2002). Studies show that A. opacum in high 

densities reduces prey resources in temporary ponds ecosystems (Scott, 1990). Depletion of prey 

resources could slow the development of A. tigrinum. However, the current study shows that A. 

tigrinum grew faster than A. opacum in all of the treatments, demonstrating that they were strong 
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competitors. To understand the impact of prey depletion in temporary pond ecosystems due to A. 

opacum and other fall breeding amphibians on A. tigrinum and other spring breeding 

amphibians, surveys of food web structure during winter and early spring in these systems 

should be done, and are needed, to inform response surface competition that will flesh out the 

mechanisms driving patterns from the field.     

Competition 

Larval salamanders grow slower due to competition for resources and decreased activity 

to avoid predation (Scott, 1990, Brodman & Jackula, 2002, Boone et al., 2002, Davis, 2012). I 

found that halfway through the experiment that large A. opacum grew less than small A. opacum. 

Even though there was the potential for stronger competition between small A. opacum and small 

A. tigrinum than there was with large A. opacum and small A. tigrinum (StLm vs. StSm) because 

of size structure. With both species at the same size, there is a greater opportunity for 

competition since they are both trying to compete for prey to reach the minimum size for 

metamorphosis. Since large A. opacum began the experiment close to the minimum size for 

metamorphosis they didn’t need to compete as much for resources, while small A. opacum did in 

order to grow.  

Through all of the treatments, A. tigrinum grew more than A. opacum even in the 

treatment where both species are the same size. It could be that A. tigrinum is better at processing 

and metabolizing prey items, as they are known to grow faster than A. opacum (Jensen, 2008). 

But it could also be that A. tigrinum was the stronger competitor. Since A. tigrinum grew at 

faster rates they were able to have a larger gape size providing them the opportunity to become 

cannibalistic and consume both other A. tigrinum and A. opacum larvae (Lannoo et al., 1989).  
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Metamorphosed salamanders 

Salamanders go through metamorphosis when they reach a minimum size or enough 

resources to successfully transform, but transformation occurs across a range of sizes because 

waiting to transform until a larger size usually results in greater success as an adult (Semlitsch & 

Wilbur, 1988, Scott, 1990). Salamanders will transform at smaller sizes when environmental 

conditions become inhospitable (Petranka, 1998). For example, pond drying will stimulate 

salamanders to transform so they can avoid dying (Semlitsch & Wilbur, 1988). I implemented a 

drying regime to more closely mimic the natural environment of a temporary pond in the 

southeast and this encouraged larval salamanders to transform. I found no differences in time to 

metamorphosis among treatments. Small A. opacum most likely needed more time in the 

mesocosm to grow and reach the minimum size to metamorphose, which could explain why so 

few of the small A. opacum metamorphosed before I ended the experiment (Scott, 1990, 

Semlitsch & Wilbur, 1988). Whereas large A. opacum was already at the right size to 

metamorphose at the beginning of the experiment and most of them transformed during the 

experiment. The drying regime decreased space but this did not impact salamander growth for 

either species (Wilbur, 1987, Scott, 1990, Boone et al., 2002). This gave salamander larvae a 

reason to leave the mesocosm through metamorphosis and escape the potentially competitive 

environment. I ended the experiment before more salamanders could transform because visual 

surveys of the tanks suggested that A. opacum mortality in treatments with A. tigrinum was high 

and survivorship was the most important response variable in the study.  

Conclusion    

As the climate warms, the breeding time of amphibians, songbirds, and butterflies 

changes as well (Beebee, 1995, Gibbs & Breisch, 2001, Visser et al. 2006, Chadwick et al., 
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2006, Todd et al., 2011). Climate change has already directly impacted the breeding time of 

amphibians across the globe (Beebee, 1995, Gibbs & Breisch, 2001, Todd et al. 2011). This 

study has shown that shifts in size structure that results in A. opacum breeding later and A. 

tigrinum breeding early has the potential to shift species interactions between A. opacum and A. 

tigrinum in ways that would benefit A. tigrinum populations and result in declines in A. opacum 

populations where the two species overlap.  Currently, A. tigrinum populations are declining 

throughout the southeast.  These results suggest that climate change could benefit A. tigrinum 

populations in the region. Researchers should consider factors impacting A. tigrinum at other 

development stages to gain a broader picture of how climate change will impact this species.      
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Table  

 

 

 

      Start length (cm) Mid-length (cm)  Growth (cm) Survivorship 

Tank Treatment Species Mean (SD) Mean (SD) (Mid-Start) (Final-Initial)/Initial 

A2 StSm A. opacum 1.75 ±0.13  3.5 ±0.31 1.75 0 

A2 StSm A. tigrinum 1.79 ±0.22  4.65 ±0.64 2.86 0.25 

A3 Sm A. opacum 3.03 ±0.22 3.91 ±0.64 0.88 0.625 

A4 Lm A. opacum 3.44 ±0.55 4.11 ±0.31 0.67 0.625 

A5 St A. tigrinum 1.66 ±0.25 5.5 ±0 3.84 0.375 

B1 St A. tigrinum 1.63 ±0.12 4.37 ±0.70 2.74 0.75 

B3 Sm A. opacum 1.69 ±0.23 3.13 ±0.37 1.44 0.75 

B4 StLm A. opacum 3.73 ±0.42 4.77 ±0.50 1.04 0.75 

B4 StLm A. tigrinum 1.67 ±0.17 4.85 ±0.74 3.18 0.5 

B5 StSm A. opacum 1.61 ±0.17 3.37 ±0.23 1.76 0.5 

B5 StSm A. tigrinum 1.72 ±0.26 4.33 ±0.38 2.61 0.5 

B6 Lm A. opacum 3.55 ±0.75 4.46 ±0.46 0.91 0.88 

C1 StLm A. opacum 3.76 ±0.48 4.95 ±0.07 1.19 1 

C1 StLm A. tigrinum 1.62 ±0.13 5.1 ±0 3.48 0.5 

C2 Sm A. opacum 1.71 ±0.21 3.25 ±0.35 1.54 0.88 

C3 St A. tigrinum 1.84 ±0.22 3.86 ±0.46 2.02 0.88 

C4 StSm A. opacum 1.69 ±0.07 3.7 ±0 2.01 0 

C4 StSm A. tigrinum 1.74 ±0.24 5.62 ±0.38 3.88 0.75 

C6 Lm A. opacum 3.46 ±0.47 4.17 ±0.24 0.71 0.38 

D1 Lm A. opacum 3.29 ±0.65 4.25 ±0.35 0.96 0.88 

D3 St A. tigrinum 1.83 ±0.11 3.87 ±0.65 2.04 0.5 

D4 StSm A. opacum 1.7 ±0.02 3.2 ±0 1.5 0 

D4 StSm A. tigrinum 1.97 ±0.15 4.66 ±0.69 2.69 1 

D5 Sm A. opacum 1.72 ±0.17 4.11 ±0.28 2.39 0.38 

D6 StLm A. opacum 3.09 ±0.49 4.37 ±0.21 1.28 0.75 

D6 StLm A. tigrinum 1.69 ±0.18 4.17 ±0.15 2.48 0.75  

Table 1: Mean salamander total length, growth, and survivorship in tanks among treatments for both 

species. Growth was calculated as the difference between length at the midpoint and at the beginning of the 

experiment, while survivorship was calculated as the proportion of salamanders from the start of the 

experiment that lived to the end of the experiment. The control treatments are small A. opacum (Sm), large 

A. opacum (Lm), and small A. tigrinum (St). The experimental treatments are large A. opacum and small A. 

tigrinum (StLm) which represents the current size structure, while small A. opacum with small A. tigrinum 

(StSm) represent the shift in size structure.   
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Figures 

 

Fig. 1: Experimental communities used to test for size-structured interactions between larval 

salamanders. Control treatments had large A. opacum (Lm), small A. opacum (Sm), or A. 

tigrinum (St). Experimental treatments included a partial intraguild predation web with large A. 

opacum and small A. tigrinum (LmSt) or an intraguild predation food web with A. opacum and 

small A. tigrinum (SmSt) (i.e., Davenport and Chalcraft, 2012).    
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Fig. 2: Mean instantaneous mortality rate of salamanders (mean ± S.E) among the five 

treatments. There was a significant difference in the mortality of small A. opacum in the presence 

of A. tigrinum (StSm) compared to when A. opacum was large (StLm) or small A. opacum were 

alone (Sm).  
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Fig. 3: Larval salamander growth (mean ± SE) halfway through the experiment with survivorship 

used as a covariate. Small A. opacum (Sm) grew faster in both the control (Lm and Sm) and 

experimental groups (StLm and StSm) There was no significant difference between treatments 

for A. tigrinum.  
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