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ABSTRACT 

Hadoop, a pioneering open source framework, has revolutionized the big data world 

because of its ability to process vast amounts of unstructured and semi-structured data. 

This�ability�makes�Hadoop the ‘go-to’ technology�for�many industries�that generate big�

data, thus it also aids in being cost effective, unlike other legacy systems. Hadoop 

MapReduce is used in large scale data parallel applications to process massive amounts 

of data across a cluster and is used for scheduling, processing, and executing jobs. 

Basically, MapReduce is the right hand of Hadoop, as its library is needed to process 

these large data sets. In this research thesis, this study proposes a smart framework model 

that profiles MapReduce tasks with the use of Machine Learning (ML) algorithms to 

effectively place the data in Hadoop clusters; activate only sufficient number of nodes to 

accomplish the data processing within the planned deadline time for the task. The model 

will ensure achieving energy efficiency by utilizing the minimum number of necessary 

nodes, with maximum utilization and least energy consumption to reduce the overall cost 

of operations in data centers that deploy the Hadoop clusters. 

Keywords: Hadoop, ML, Energy-Aware, Big Data, MapReduce, HDFS 
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Chapter 1. Introduction 

Big�Data, we’ve all heard of it, living in a technology�driven world,�companies and 

organizations are constantly producing and collecting massive amounts of data. At such 

a rate, it is expected that by 2020 at least 35 zettabytes of data would be produced 

(Lublinsky B., et al. 2013 p. 1). With the rapid growth of different business sectors in the 

world, there becomes an increasing need for powerful data centers that are equipped 

with platforms like Hadoop clusters, which are capable of processing and 

communicating large scale of data. A study has been shown that data centers with a larger 

amount of servers can consume the power of megawatts in data processing and 

providing services in the Service Level Agreement (SLA), which in turn increases the 

electricity bill costs and can negatively affect business profitability (Qureshi, Weber, 

Balakrishnan, Guttag, & Maggs, 2009). Hadoop clusters with its open-source platform 

have proven to be a successful, efficient, and reliable business solution for data 

processing, i.e. Facebook & Twitter use Hadoop clusters in ML and data analytics 

operations (“Top 10 Industries�using Big Data”, 2016). 

When Apache Hadoop came to the front, it was like a breath of fresh air. There was finally 

a solidified solution, which already proved to be successful in the commercial world. 

Being an open source project made it ever more popular and accessible. With the 

combination of Hadoop MapReduce, it allowed processing massive amounts of data 

shared on scalable clusters�and�performing�convoluted data that wasn’t�possible to�
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analyze or index in the past. Nevertheless, things even gets better with the consideration 

of machine learning (ML) as a service in the Big Data scene, which will not only improve 

the way data is being processed, but will also allow for quick business decisions by 

understanding the patterns of the data itself. The ML algorithms that will be used in this 

proposal are the most used in Big Data and are from the family of supervised learning 

algorithms. 

1.1 Brief history on Hadoop 

Doug Cutting and Mike Cafarella started Hadoop in 2002, based off an Apache 

Nutch project that they were working on. The Apache Nutch project was based on 

building a search engine that can index billions of pages. During their research they found 

that building this search engine would cost half a million dollars, as well as thirty 

thousand dollars a month just in running costs, making this extremely expensive and not 

feasible at that moment. Realizing there was no way they could continue their project 

with the required costs, they began looking for a more cost-efficient solution in order to 

reduce the issue of storing and processing large data sets. Cutting and Cafarella came 

across a paper that Google released in 2003 on Google File System (GFS) which described 

how to store large datasets, according to Ghemawat, Gobioff, and Leung (2003). Realizing 

that this paper had half of what they needed to solve their issue, they carried on with 

their research. In 2004, Google yet again released a paper which provided the solution for 

what they were looking for in order to process large datasets, which is MapReduce (Dean 
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and Ghemawat, 2004). At this time, Google didn’t�actually�implement�GFS�and�

MapReduce techniques, Cutting and Cafarella decided to try it out using both techniques 

GFS and MapReduce as an open source in their Apache Nutch project. With the project 

being open source, it would be able to reach more people. 

After implementing both techniques, they found that Nutch was limited in clusters and 

needed a larger cluster to be able to run reliably, but unfortunately they were not able to 

do this on their own and needed to find a company that would be interested in their 

project�and�invest�in it. That’s when�Cutting joined Yahoo! in 2006. He wanted to�continue 

with his project to be open source and wanted to implement a dependable and scalable 

computing framework. Shortly after joining Yahoo!, he separated the distributed 

computing parts from Nutch and combined GFS and MapReduce and created Hadoop. 

Yahoo! released Hadoop in 2008 as an open source with Apache Software Foundation 

(ASF), in which ASF tested successfully 4000 node cluster on Hadoop. Later in 2009, they 

were able to successfully sort a PetaByte of data under 17 hours which managed billions 

of searches and indexed millions of webpages using Hadoop. In the same year, Doug 

Cutting left Yahoo! and was employed by Cloudera. This gave him the ability to spread 

Hadoop to a larger array of industries, fulfilling his will of wanting to share Hadoop with 

the world. 
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In 2011, ASF released Apache Hadoop version 1.0 while version 2.0.6 became available 

with the inclusion of Apache Hadoop YARN in 2003, and the most recent version was 

released in December 2017, that is version 3.0 (White, 2015, p. 32 & 33). 

1.2 Research Motivation 

In the real world, it is likely common that a data center with 1000-rack consumes 

10MW of power annum (Manzanares, Qin, Ruan, & Yin, 2011), which poses a burden 

on the budget in a way that can affect the overall business profitability. Therefore, there 

is a need for an efficient approach that can address the power consumption in Hadoop 

clusters since it is the most used framework in data centers, and this is what motivates 

this study. There are three pivotal factors that motivate this study: 

 The high demand of cost minimization of the overall data center’s operations 

where Hadoop clusters are deployed. 

 The need for a resilient framework that efficiently reduces the energy 

consumption in the high workload Hadoop clusters. 

 The significance of deploying a model that is able to predict the least necessary 

resources, which maximizes the node utilization and minimizes energy 

consumption. 
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1.3 Our Contribution 

Unlike the traditional model-based data placement solutions, this research is 

adopting ML algorithms as an intelligent solution for data placement in Hadoop clusters. 

 The research introduces a novel approach to build an energy-aware MapReduce 

framework that aims to reduce the energy consumption of data processing in data 

centers, which in turn should reduce the total cost of operations in these data 

centers. 

 Furthermore, the reduction in the data processing cost exhibits a good business 

opportunity for data centers on the cloud by allowing them to give better offers 

for�the servers’ tenants, which can be appealing to more tenants and, accordingly, 

increase the profitability of the data center. 

1.4 Challenges 

Processing multiple workloads in terms of the operation type and the data size 

on Hadoop cluster is the preliminary phase in this thesis. Hadoop benchmarking comes 

in the place and play the main role for providing the necessary functionalities to test the 

performance of Hadoop cluster and/or studying the hardware resources needed for 

processing different workloads on the cluster. In general, Hadoop benchmarks are 

developed for more general test purposes and not for specific needs in terms of the size 

and the type of data being processed on the cluster, which proposed some challenges 
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related to the benchmark configuration. For example, in this study, in order to execute 

Wordcount MapReduce job for different workloads on Hadoop cluster, we had to 

generate different data size by replicating a certain amount of data several times and 

store the repeated data in a file for execution. 

The Apache Software Foundation has released Hadoop in many releases such as 

(2.6.5, 2.7.2, 2.7.7, 2.8.4 …etc.), each release has slight configuration differences and�

different stability than the other ones. Some Hadoop releases have low stability, while 

some releases have better stability. This likely happens due to the bugs that potentially 

come with the open source software releases. From our experience, Hadoop official 

configuration does not really work as expected due to the different hardware resources 

with different configurations, in addition to the different operating systems 

configuration where Hadoop is installed. This posed a challenge for our study in terms 

of choosing the right operating system and the right Hadoop release that will optimally 

be configured for the available hardware resources in order to reach our study goals. 

1.5 Thesis Organization 

In Chapter 2 we talk about the Hadoop system architecture, its components and 

the contribution of each component to the Hadoop system performance, then we will 

demonstrate a brief definition for supervised and unsupervised ML algorithms. Related 

research and studies are discussed in Chapter 3. The Hadoop benchmarking (HiBench) 

is explained in Chapter 4, along with an illustration for the experimental hardware and 
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software setup. Chapter 5 discusses our research approach, in particular the data 

collection and how it was used by the ML model, data preparation pipeline, and the 

training of the ML model. Chapter 6 includes the experimental results, analysis of the 

ML models’�performance, recommendation for the energy-aware Hadoop system 

architecture, our research conclusion and future work, and system scalability. 
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Chapter 2. Background 

2.1 Hadoop System Architecture 

Hadoop is an open source framework that is used to manage, store and process massive 

amounts of data running on large scalable clustered systems in a relatively short period 

of time. Hadoop provides a reliable, scalable, and fault tolerant system. It also offers a 

cost-effective way to store colossal amounts data without having to commit more 

processing power, thus, having the ability to scale only when needed. Hadoop systems 

is the heart of the Big Data ecosystem used in data mining, predictive analytics, and ML. 

With the ability to handle unstructured, structured, and semi-structured data, Hadoop 

can analyze, process, and distribute data. Accordingly, it becomes appealing to an array 

of industries in the big data realm (Lublinsky et al., 2013, p. 4). There are 3 main 

components of Hadoop as shown in Figure 2.1.1. 

Figure 2.1.1: Hadoop’s Main Components 
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2.1.1 HDFS 

HDFS is a foundational component to Hadoop and a foundation for other tools. 

HDFS was designed to provide storage for exceptionally large files, i.e. petabytes and 

above. Data is�written once but�read multiple�times, a process�known as�‘streaming data�

access�pattern’. HDFS�runs on commodity hardware (easily accessible and inexpensive) 

making HDFS much more affordable and easier to use in comparison to other file 

systems. HDFS splits files into blocks and sends them to numerous nodes across the 

Hadoop cluster (Lublinsky et al., 2013, p.20&21), thus, HDFS is a block-structured file 

system, see Figure 2.1.1.1. Master/Slave nodes (NameNode and DataNode) are what form 

HDFS cluster: 

 NameNode (Master Node) manages the file system namespace. Stores all 

metadata of the filesystem across the cluster by which it is stored in the main 

memory. Metadata is designed to be compressed. NameNode manages the file 

system namespace and knows where all the DataNodes block files are located 

(Lublinsky et al., 2013, p.20&21). The functions of HDFS NameNode executes file 

system namespace operations, i.e., renaming, opening, and closing directories and 

files. Maintains and manages the DataNodes as well as mapping blocks of a file to 

DataNodes. NameNode maintains all locations of every block of a file, as well as 

the replication factor of all the blocks. Receiving heartbeat and block report from 
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the DataNodes, thus, ensuring that the DataNode is alive. In the event that 

DataNodes fail, a NameNode will select a new DataNode for new replicas. 

 DataNode (Slave Node) are the workers (slave) of the filesystem, they store and 

bring back any blocks when ordered to do so and report back to the NameNode 

(Lublinsky et al., 2013, p.20&21). The functions of HDFS DataNode are to serve the 

client write/read requests and receive instructions from the NameNode to perform 

block creation, deletion, and replication, as well as submits block reports to 

NameNode which contains the list of blocks. The health of HDFS is reported from 

NameNode, as DataNode sends NameNode a heartbeat. 

Blocks in HDFS architecture are files that are split into block-size pieces called 

block, by default are the size of the block are 128 Mb, but the block size can be 

configured based on requirements. As an example, consider a file size that is 612 Mb, 

HDFS creates four blocks that, by default, will be of size 128 Mb and then one block will 

be the size 100 Mb. On the other hand, a file size that is only 3 Mb will only use 3 Mb of 

the disk space, thus allowing this small sized file to not occupy the full block size space 

in the disk. 

Blocks Replication Management in HDFS consists of storing replicas of a block 

on numerous DataNodes that are based on a replication factor. The number of replicas 

to be replicated for blocks of a file is called the replication factor in the HDFS 

architecture. As an example, if the replication factor is 2, then two replicas of the block 
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will be stored on different DataNodes, thus allowing the block to be accessible from 

another DataNode that contains the replica in the event if one of the data blocks fails. 

Say that we want to store a file of 128 Mb and the replication factor is 2. Thus 

(2*128=256) 256 Mb of disk space will be used for a file as two copies of the block will be 

stored (“Hadoop HDFS Architecture Explanation and Assumptions” 2020). 

Figure 2.1.1.1: HDFS Architecture 

2.1.2. MapReduce 

Google invented MapReduce in 2004, which was suitable for parallel data 

processing in a distributed computing environment. MapReduce was designed to run on 

commodity hardware in order to solve large data computational issues and problems. 

MapReduce is a framework in which data splitting, data distribution in the cluster, data 

parallel processing, execution synchronization, and fault tolerance is automatically 
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managed (Agarwal and Khanam, 2015). MapReduce framework is typically composed of 

two tasks: Map Task & Reduce Task. 

 Map Task (Mapper): Takes the input data in the form of key value pairs and then 

generates the output in the form of key value pairs (Agarwal and Khanam, 2015). 

Below are the various phases of the Map Task. 

RecordReader: Converts the input split into records, the data is then parsed into 

records, but does not parse itself. The data is given to the mapper function in key 

value pairs. 

Map: A user defined function that processes from the RecordReader the key value 

pair, producing multiple or zero intermediate key value pairs. The key value pair 

is determined by the mapper function. Usually the key is the data that the reducer 

function performs the grouping operation. The value is the combined data that 

gets the final result in the reducer function. 

Combiner: An optional function used as a localized reducer that groups the data in 

in the Map phase. In many scenarios, aggregating the intermediated data from the 

mapper decreases the amount of data that is needed to move over the network and 

provides ultimate performance gain without any disadvantages. However, the 

combiner is not always guaranteed to execute. 

Partitioner: Takes from the Mapper the intermediate key value pairs, then splits 

them into shards, allowing one shard per reducer. The Partitioner by default 
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retrieves the hash code of the key, and evenly distributes the keys on the reducers 

by performing modulo operations by the number of reducers 

(key.hashcode()%number of reducers). This provides that the key with the same 

value from different mappers will ultimately end at the same reducer. From each 

map task the partitioned data is written onto the local file system, awaiting there 

for the reducer to pull it (“Hadoop Architecture in Detail –�HDFS, Yarn, & 

MapReduce” 2019). 

 Reduce Task (Reducer): Takes the input of key and list of value pairs then 

generates the output as key value pairs. The output in this phase is the final output 

(Agarwal and Khanam, 2015). Below are various phases of the Reduce Task. 

Shuffle & Sort: The first step for the reducer is shuffle and sort, which downloads 

to the machine where the reducer is running the data written by the Partitioner. 

This step then sorts pieces of the individual data to a large data list, collecting the 

equivalent keys, by doing so, allowing the framework to make it easier to iterate 

in the reduce task. Although this phase is not customizable, the framework 

automatically handles everything while ensuring that the developer has complete 

control on how the keys are grouped and sorted through a comparator object. 

Reducer: Performs the reduce function once per key grouping. The framework 

hands the iterator object and function key that contains all values belonging to the 

key. The Reducer can be written to filter and combine data in multiple ways. When 
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the reduce function finishes it gives an OutputFormat of either zero or more key 

value pairs. The Reduce function, similar to the Map function, is different from job 

to job. 

OutoutFormat: The final phase in the reduce task includes taking the key value pair 

from the Reducer and writing it in a file by the recordwriter. Separating the key 

and value by default are separated by tab with each record by a newline character. 

The final data will be written to HDFS (“Hadoop Architecture�in Detail –�HDFS, 

Yarn, & MapReduce” 2019). 

A job in the MapReduce model is an application that is to be executed. An example 

of the MapReduce model is shown in Figure 2.1.2.1. The mapper and reducer jointly 

create a Hadoop job. It’s�worth mentioning that the mapper�is�a compulsory�part�of the�

job and the reducer is noncompulsory, the user is still responsible for implementing the 

logic that will give the desired output for his own task (Lee, Hsieh, Hsieh, & Hsiao, 2014). 

In MapReduce, there are two daemons to process executing jobs: JobTracker and 

TaskTracker. 

 JobTracker is in charge of all the jobs scheduling and task dispersion. 

 TaskTracker is the worker and must execute all tasks given and return the results 

to the JobTracker (Lee, Hsieh, Hsieh, & Hsiao, 2014). 
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JobTracker and TaskTracker communicate with one another using a heartbeat message 

in which these heartbeats tell the JobTracker that the TaskTracker is still alive and the 

TaskTracker is able to signify what time it would be ready to run a new task (Lublinsky 

et al., 2013, p. 68). 

Figure 2.1.2.1: MapReduce Job Flow 

2.1.3. YARN 

YARN stands for, Yet Another Resource Negotiator, was introduced in Apache 

Hadoop 2 in 2013 as a new cluster resource management system. Although designed to 

improve MapReduce implementation, it is also capable to sustain other distributed 

computing paradigms (White, 2015, p.97). It is important note that YARN does not totally 

replace MapReduce but can be used alongside it. By introducing YARN, it took away the 

complete reliance on MapReduce and opened the door for Hadoop to run applications 

on other engines such as Apache Spark, Apache Kafka, Apache Flink as well as Apache 

Storm. 
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YARN separates the job scheduling and resource managements into two separate 

daemons, basically separating the functionality�of MapReduce’s�JobTracker. There are�

two long-running daemons, one called the Resource Manager (RM), which comprises of 

an Application Manager and Scheduler and manages the resources across the cluster, and 

the second one called the Application Master (AM), which caters to the support of specific 

applications. What the AM does once it runs depends completely on the application itself, 

whereas the application could be either a single job which is common in jobs done in 

MapReduce or multiple jobs as a Directed Acyclic Graph (DAG). It is important to note 

that YARN does�not�alter�the MapReduce programming model or�its�API’s�but�makes�a�

way for a different resource model in carrying out MapReduce jobs. Most MapReduce 

applications will work as they are, but most likely need to be recompiled. 

The architecture of YARN in Figure 2.1.3.1 shows the client program submitting 

an application with all the specifications needed for the AM, thus all the information 

needed must be provided to the RM so the RM then finds a node manager in order to 

launch the initial container. What the AM does once it runs depends completely on the 

application itself; within the container it is running it could run a computation itself, and 

return the results to the client, or it could send a request to the RM for more containers, 

so that it can run a distributed computation. A container may use a UNIX process 

(Lublinsky et al., 2013, p.450-451). 
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Figure 2.1.3.1: YARN Architecture 

Although there are three main components in Hadoop as shown in Figure 2.1.1, there are 

more core components to Hadoops ecosystem which is ever growing. Other components 

are HBase, ZooKeeper, Oozie, Pig, and Hive, just to mention a few. Hadoop has the ability 

to store large amounts of data, is flexible, cost effective, has high computational power, 

and linear scaling. Hadoop has become the superpower in the Big Data Industry. 

2.2. Machine Learning (ML) 

ML is a subarea of Artificial Intelligence, which focuses on algorithms that are 

designed to give computer systems and software applications the ability to learn 

automatically and improve without being programmed to do so. The main objective of 
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ML is to make it available for computers to learn without the need of assistance from 

humans. With that said, the learning process often consists of data or observations, in 

which ML looks for patterns in the data or the information that has been observed in 

order to make better decisions or more accurate decisions. 

ML algorithms are generally categorized as supervised and unsupervised learning 

classification, but in Big Data, Supervised Learning are typically the go-to algorithms 

used. However, unsupervised learning is also used. Below I will explain what supervised 

learning and unsupervised learning are and the algorithms commonly used in Big Data. 

Supervised Learning is when you train or teach the machine using a learning 

algorithm from training datasets. The algorithm makes predictions from the datasets 

given and�is�corrected, once the learning stops, that’s�when�the algorithm�has�reached an�

optimal level of performance (Brownlee, 2016). 

 Logistic Regression: A categorical algorithm which is used to appoint observations 

in a distinct batch of classes. The achievement depends much on the size of 

training data (“Logic Regression”, 2017).�

 Multiple Linear Regression: A regression algorithm which attempts to observe more 

than one independent variables and one dependent variable by finding an optimal 

fitted linear equation�that describes�the observed data (“Multiple Linear�

Regression”, 1997-1998). 
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 Naïve Bayes: Based on Bayes Theorem and is a compilation of probabilistic 

classification algorithms. It is scalable, does not require large training datasets 

(Soni, 2018). 

 Random Forest: A collection of decision trees. Works well with large datasets but 

should use caution when creating too deep of a tree as it could cause overfitting 

(Donges, 2019). 

 K-Nearest Neighbor (KNN): Used for both regression and classification predictive 

issues. It can be computationally challenging in both test and training phases, as 

they correlate all training samples when classifying all test samples (Apruzzese, 

Colajanni, Ferretti, Guido, & Marchetti, 2018). 

 Support Vector Machines (SVM): Non-probabilistic classifier, defined as a separating 

hyperplane. This particular algorithm is not very scalable and is best used as a 

binary classifier (Patel, 2017). 

Unsupervised Learning: Data is not labeled or classified; thus, its main goal is to 

infer a function from unlabeled data in order to describe a hidden structure (Dua S. and 

Du, X. 2011, pp. 31). 

 Clustering: Divides and then regroups data points into groups that are related and 

more similar. Although there are hundreds of clustering algorithms, two of the 

most commonly used clustering algorithms are K-Mean clustering and 

Hierarchical clustering (Kaushik, 2016). 
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Chapter 3. Related Work 

Many studies have been conducted to improve Hadoop clusters’ energy�efficiency; 

numerous algorithms and platforms have been developed in order to minimize the 

amount of power consumed in data centers. In this thesis, I will address related work of 

the energy consumption techniques from three conceptual points of views: scheduling 

and allocating resources in the cloud and data centers, efficient energy utilization in data 

centers, and different approaches of scheduling MapReduce jobs. 

3.1 Scheduling and allocating resources in the cloud and data centers 

Estimating the resources needed for computations in data centers and the cloud 

can be an effective method for cost reduction, probabilistic models have been built for 

task scheduling in cloud computing by using Erlang stochastic (Hacker, Mahadik 2011). 

The study shows that modeling the probability of resources needed, and task waiting 

queue based on different workloads can help in estimating the clusters’ size and the 

amount of spare resources needed, which would possibly control the cost of needed 

resources and therefore effectively reduce the cost of energy consumed in data centers. 

According to Tian and Chen (2011), by modeling MapReduce processing 

components, data centers’ resource provisioning can be optimized, and�therefore jobs�

processing cost can be minimized. Tian and Chen have proposed a function that helps to 

reduce the jobs’ financial�cost, the function�models�the relationship between input�data, 
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resources needed, i.e. slots for Map and Reduce tasks and the job complexity, where the 

function parameters can be utilized based on the requested job. 

Palanisamy, Singh, and Liu (2015) have presented a MapReduce model for data 

processing in the cloud. Their model automates cluster configuration in the cloud based 

on the job deadline and the MapReduce profile of the reuqested job, which can globaly 

optimize the resource utilization in the cloud. According to Palanisamy et al. (2015), the 

model significantly reduces data center resources cost by 80% for processing workloads 

such as Facebook workloads. 

A Microsoft research has been conducted by (Jalaparti, Ballani, Costa, Karagiannis, 

& Rowstron 2012) on making the data center service providers more efficient in the cloud. 

Based on the customer’s MapReduce job complexity and the customer’s cost constraints, 

the system’s�model predicts�multiple tuples�of�resources�as�computetional resources and 

network�bandwidths. Then, the resource tuple choice is�made according to�the customer’s�

job desired completion time, the existance of resources that yields the cheapest cost for 

the cloud service provider, and the ensurance of resource avaliability for future 

customers. 

3.2 Efficient energy utilization in data centers 

Kaushik, Bhandarkar, and Nahrstedt (2010) have simulated an approach of 

classifying�Yahoo’s Hadoop cluster�servers�into�two�categories, hot�and�cold categories. 
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Hot category�classifies�the servers�that currently�have�data that’s�being�accessed,�and�cold 

category classifies servers that are in a sleeping mode. This classification is based on data 

processing classification in terms of performance requirements, cost, SLA, and power 

characterstics, which in turn affects the data placment in HDFS in the cluster. The 

researchers’ simulation show that their�approach can reduce the power�consumption in 

Yahoo Hadoop cluster by 24% annually. 

Goiri et. al. (2012) have proposed a novel Hadoop framework (GreenHadoop) that 

aimed to reduce the On-Grid energy consumption in data centers by relying more on the 

solar power as an alternative renewable energy. Their proposed framework schedules 

MapReduce jobs in a way that allows the maximum amount of solar energy to be used to 

complete the jobs within its deadline constraint, and if the On-Grid power has to be used 

in order�to�meet�the jobs’ deadline constrain,�then�the�framwork�schedules�these jobs�in�

the time where the On-Grid energy consumption is the cheapest. 

Wirtz and Ge (2011) have conducted an experiment on Hadoop MapReduce tasks 

to improve energy efficiency in data centers. Their energy reduction approach is based 

on two techniques: changing the amount of concurrently working nodes, and adusting 

the scaling of the�CPU’s�frequency�and voltage, where both techniques�are based on�the�

MapReduce jobs computational characteristic. 

In another study on reducing the energy consumption in Hadoop clusters, Lang 

and Patel (2010) have performed an experimental comparison between two exterme 



 
 

    

          

      

     

    

 

 

   

     

      

    

 

   

      

       

    

     

     

       

24 

approaches on different MapReduce workloads. The first approach is based on powering 

up a few number of nodes when the cluster is underutilization, the second approach is 

based on using all�clusters’ nodes for processing a MapReduce workload and then 

shutting down every single node in the cluster. The second exterme approach has been 

proven to be more effective in improving the energy efficiency in Hadoop cluster 

according to (Lang & Patel, 2010). 

3.3 Different approaches of scheduling MapReduce jobs 

Sandholm and Lai (2009) have presented a resource allocation system that 

improves the scheduling process of MapReduce jobs. The system achieves its goal in three 

ways: the user-assigned and regulated priorities for different service levels to jobs, 

allocating cluster’s resources�is�adujsted dynamically to�satisfy job phases, automatic�

detection and elimination of the bottlenecks during the job processing life time. 

Wang, Shen, Yu, Nie, and Kou (2013) have proposed a scheduling technique that 

improves system throughput in job-intensive environments. Their schedular algorithm 

analyzes the MapReduce job requirements, and satisfies four main factors that can 

improve system throughput, the factors are: data processing locality should be 

maintained at its highest ratio, choosing the nonlocal processing that keeps the system 

throughput high, keeping stored data on the cluster nodes as balanced as possible to 

avoid poor network performance, and making use of all the cluster computing resources 
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by lessening the amount of idle nodes. This schedular algorithm improves system 

throughput on the expenses of the energy consumption. 

Verma, Cherkasova, and Campbell (2011) have proposed a non traditional 

MapReduce framework for controlling the cluster resource allocation towards achieving 

applications performance objectives. In their approach, firstly, they profile the 

MapReduce job based on its performance characteristics during the map and reduce 

phases. Secondly, they built a model that is able to estimate the necessary cluster 

resources needed to complete the MapReduce job based on the job profile and a given job 

deadline for completion. Finally, they implement a job schedular in Hadoop that orders 

the MapReduce jobs and determines the amount of needed resources, to ensure meeting 

jobs completion time requirement. 

Kurazumi, Tsumura, Saito, and Matsuo (2012) study weren’t�concerned about the 

energy efficiency in Hadoop cluster, but they focused on improving�the node’s�CPU�

efficiency for the I/O bounded jobs, instead. Their approach of improving the CPU 

performance is to dynamically detect the I/O waiting times during the MapReduce jobs 

execution and schedule more tasks to the CPU processing slots during these times to 

shorten jobs execution time. 
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Chapter 4. Benchmarks & Experimental Setup 

4.1 HiBench 

HiBench is considered a big data benchmark suite for the Hadoop framework and 

is the most commonly used application in MapReduce jobs. The benchmarks used 

comprehensively classify big data Hadoop framework in terms of system resource 

utilization, throughput, and speed. The benchmarks used in this research for 

unstructured data include Micro benchmarks, i.e., WordCount, Sort, and TeraSort. For 

semi-structured data included Web Search benchmark, i.e., PageRank. For Machine 

Learning benchmarks I used K-Means (Huang S., Huang J., Yan, Lan, Jinquan, 2010). 

4.1.1 Micro Benchmark 

 WordCount is a CPU bound process. WordCount benchmark reads the input text 

file that calculates how many times each word occurs. Using the 

RandomTextWriter program found in Hadoop, the input data is created by 

executing the script for the workload. This job takes away a small amount of 

information from data of a larger source (Huang S., Huang J., Yan, Lan, Jinquan, 

2010). 

 Sort is an I/O bound process. Sort benchmark as its name suggests sorts, sorting 

the input text file by key. Using the RandomTextWriter program found in Hadoop, 
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the input data is created by executing the script for the workload. This program 

uses map or reduce to run the job where the tasks write large series of unsorted 

words without interaction between the tasks. Based on key, the output of the key 

value pairs in map phase get sorted and shuffled and then is reduced again based 

on key. During the shuffle and merge stages of the MapReduce model the data is 

automatically sorted (Huang S., Huang J., Yan, Lan, Jinquan, 2010). 

 TeraSort is both a CPU bound process (during map phase) and I/O bound process 

(during reduce phase). Similarly, like Sort benchmark it sorts by key the input text 

file, however, TeraSort has the ability to sort and distribute equal loads to all nodes 

during the process and uses either map or reduce to sort the final order of samples 

input data. Using the TeraGen program found in Hadoop, which uses either map 

or reduce to create data, the input data is created by executing the script for the 

workload, and by default has the ability to produce billions of byte records (Huang 

S., Huang J., Yan, Lan, Jinquan, 2010). 

4.1.2 Web Search Benchmarks 

PageRank is a CPU bound process. It measures the quality and importance of a 

website as well as calculates the number of these websites and links. The 

implementation of the PageRank algorithm is used in MapReduce for large scale search 

indexing. The workload comprises of multiple Hadoop MapReduce jobs, and are 
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iterated until conditions of coverage are satisfied (Huang S., Huang J., Yan, Lan, 

Jinquan, 2010). 

4.1.3 Machine Learning Benchmarks 

K-Means Clustering is both CPU bound (during iteration) and I/O bound (during 

clustering) process. K-means is a widely used clustering algorithm in machine learning. 

This clustering algorithm can be used in Hadoop by executing the Hadoop job 

iteratively until the desired number of iterations have met the specified limit, then 

allowing the clustering job to run and assigns each sample to a cluster. Each sample is 

defined as a numerical d-dimensional vector. The workload input is created based on a 

statistic distribution using a random data generator. (Huang S., Huang J., Yan, Lan, 

Jinquan, 2010). 

4.2 Experimental Setup 

One of the most Hadoop’s traction features is its�capability to run on commodity�

hardware, particularly when processing batch jobs overnight for reports or actionable 

information production. Unlike batch jobs production environment, processing real-

time jobs on Hadoop cluster require very high hardware specifications such as large 

memory size i.e. 512 GB. In this study our goal is developing energy-aware Hadoop 

cluster framework for processing batch jobs, therefore, we conducted the experiment on 

commodity hardware. 
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4.2.1 Hardware and Prerequisites Installation 

We setup 7-nodes Hadoop cluster (1 NameNode and 6 DataNodes), Table 4.2.1 

below depicts the hardware specifications of the cluster’s nodes.�

Table 4.2.1: Cluster’s Nodes Hardware Specifications�

Node Specifications 

NameNode 2.4GHz CPU (4 cores), 8 GB Memory, 228 GB HDD 

DataNode 1 2.4GHz CPU (4 cores), 4 GB Memory, 228 GB HDD 

DataNode 2 2.4GHz CPU (4 cores), 8 GB Memory, 228 GB HDD 

DataNode 3 2.4GHz CPU (4 cores), 8 GB Memory, 228 GB HDD 

DataNode 4 2.5GHz CPU (4 cores), 8 GB Memory, 457 GB HDD 

DataNode 5 2.3GHz CPU (4 cores), 16 GB Memory, 468 GB HDD 

DataNode 6 2.3GHz CPU (4 cores), 16 GB Memory, 468 GB HDD 

Each node is equipped with Ubuntu 16.04 Operating System. We connected the nodes 

to power meters to enable measuring the power consumption in KWh for every 

workload processed. We started Hadoop cluster environment setup by installing and 

configuring all the prerequisites software tools and packages on each node, such as Java 

OpenJDK 1.8.0_252, psutil 5.7.0 (Cross-platform lib for process and system monitoring 

in Python)….etc.�

4.2.2 Multi-Node Hadoop Cluster Setup & Configuration 

After the prerequisites, we setup multi-node Hadoop cluster 7-nodes by 

installing Apache Hadoop 2.7.2 distribution on each node. We configured 1 node as a 
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master (NameNode) node which is responsible of managing the file system namespace 

and regulates clients file access. We configured 6 nodes as DataNodes (slaves) which 

are responsible of storing actual business data in blocks, managing these data blocks 

based on the NameNode demand, and respond to the read/write requests from the 

client’s file system.�

There are four XML files which include the main Hadoop cluster configuration, 

these files are: 

 core-site.xml: Contains configuration for the core Hadoop functionalities that are 

essential to MapReduce and HDFS such as I/O settings. 

 hdfs-site.xml: Contains configuration for the NameNode, secondary NameNode, 

DataNodes, and the HDFS daemons settings. 

 mapred-site.xml: Contains configuration settings for MapReduce daemons such 

as Map tasks and Reduce tasks (note that job tracker and task tracker are 

deprecated properties in Hadoop v2.7.2). 

 yarn-site.xml: Contains configuration settings for NodeManagers and 

ResourceManagers. 

We have configured Hadoop cluster with a high efficient and maximum resource 

utilization goal in mind. The details of the configuration settings for the above four files 

are presented in Appendix A. 
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Chapter 5. Research Methodology 

This study aims to profile MapReduce tasks with the use of ML algorithms to 

effectively place the data in an energy-aware Hadoop clusters; activate only sufficient 

number of nodes to accomplish the data processing efficiency by utilizing the minimum 

necessary nodes, with maximum utilization, and least energy consumption to reduce the 

overall cost of operations in data centers that deploy the Hadoop clusters. We have used 

HiBench benchmark for profiling MapReduce workloads. The benchmarks are micro 

benchmarks (Terasort, Sort, Wordcount), web search benchmark (Pagerank), and the 

machine learning benchmark (K-means clustering algorithm). Our research objective was 

inferenced through the below two phases: 

5.1 Phase 1: Resource Utilization measurements 

The procedure started by installing Hadoop cluster (7-nodes): one master 

(NameNode) node and 6 slave (DataNode) nodes. The HiBench benchmarks were 

configured to generate the desired workload data size that corresponds to each test. In 

order to measure the power consumption with each workload processed on the cluster, 

we used dedicated power meters which were always connected to the master and slave 

nodes. 

To study the minimum necessary hardware resources needed for processing 

MapReduce workloads with the lowest possible power consumption, we characterized 
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different MapReduce workloads. The strategy that we followed was observing the energy 

consumption at different workloads and�different�number�of cluster’s nodes. Besides, 

observing the power consumption of the cluster’s nodes we also�observed the nodes 

hardware resources utilization such as CPU utilization, memory utilization, and storage 

utilization. Our experiment was carried out on two types of operations; I/O bound 

(Terasort, Sort) in which the major job’s�time to complete is spent on waiting for I/O 

operation to be completed, and CPU bound (Wordcount, Pagerank, Kmean) in which the 

major�job’s�time�to�complete is�spent on waiting for�operations�using the CPU to�be 

completed. 

5.1.1 Terasort 

The limitation of the I/O bound jobs such as Terasort is the cluster’s storage 

capacity. Due to the DataNodes storage capacity, in our experiment we could only 

process up to 65 GB data size on the 2-nodes Hadoop cluster which is NameNode 

equipped with 228 GB Hard Disk Drive (HDD) and one DataNode that was equipped 

with 228 GB (HDD). Figure 5.1.1.1 shows the power consumption of processing 

different Terasort workloads at different number of Hadoop cluster’s nodes.�Using the 

HiBench Terasort benchmark configuration we generated different workloads by 

changing the data size parameter in the Terasort benchmark configuration file i.e. data 

size parameter = 100000000 for generating 10 GB data size, 1000000000 for generating 
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100 GB data size ...etc. then we processed the generated workloads on different 

numbers of Hadoop cluster’s nodes. 

(a) (c) 

(d) (b) 
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(e) (f) 

Figure 5.1.1.1: Power Consumption vs Terasort Workloads on Hadoop Cluster 

For example, the power consumption of processing Terasort workloads on 5 

nodes Hadoop cluster is shown in Figure 5.1.1.1 (d) , the vertical axis represents the 

cluster’s total power consumption in KWh for executing different Terasort�MapReduce 

workloads at (65.0, 67.5, 70.0, 75,.0, 80.0) Giga bytes, which are represented on the 

horizontal axis. 

The complete experimental results for all the Terasort workloads and the cluster’s 

resource utilization is shown in Appendix B. 

5.1.2 Sort 

In Hadoop cluster, Sort is an I/O bound job, so as mentioned before the limitation 

in this type of jobs is the cluster’s storage capacity. In our experiment we could not 



 
 

  

    

     

         

     

       

       

      

 

 

 

 

 

35 

process more than 65 GB data size on 2-node Hadoop cluster due to the storage capacity 

limitation, where processing 67.5 GB on the 2-nodes cluster has failed to complete. 

Similarly, 3-nodes (one NameNode and two DataNodes) Hadoop cluster could process 

only up to 72.5 GB sort workloads, the 75 GB sort workload has failed to complete on 3-

nodes Hadoop cluster. Figure 5.1.2.1 shows the power consumption of processing 

different Sort workloads�at�different�number�of Hadoop cluster’s nodes. Using the�

HiBench Sort benchmark configuration we generated different dataset size in a similar 

manner as what we did in the Terasort benchmark, then we processed it on different 

numbers of Hadoop cluster’s nodes. 

(a) (b) 
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(c) (d) 

Figure 5.1.2.1: Power Consumption vs Sort Workloads on Hadoop Cluster 

The complete experimental results for all the Sort workloads and the cluster’s resource 

utilization is shown in Appendix B. 

5.1.3 Wordcount 

Unlike I/O bound jobs, CPU bound jobs such as Wordcount MapReduce job, the 

limitations is the CPU utilization. During the experiment we have not experienced 

having average CPU utilization over 90%, however we have observed an average CPU 

utilization of 88.60% while processing 35 GB Wordcount workload on 3-nodes (one 

NameNode and 2 DataNodes) Hadoop cluster, during a 1 hour and 5 minutes period of 

time.  Figure 5.1.3.1 shows the power consumption of processing different Wordcount 

workloads at different number of Hadoop cluster’s nodes. 
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(a) (c) 

(b) (d) 
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(e) (f) 

Figure 5.1.3.1: Power Consumption vs Wordcount Workloads on Hadoop Cluster 

Due to some implementation and configuration limitations of the HiBench 

Wordcount benchmark version that we used, we had implemented a Python script that 

repeats a 5.5 MB text data to generate different data size, then we submitted the 

generated workloads to the Hadoop cluster to apply Wordcount benchmark on it at 

different number of the cluster’s nodes.�

The complete experimental results for all the Wordcount workloads and the cluster’s 

resource utilization is shown in Appendix B. 

5.1.4 Pagerank 

Pagerank is a web search benchmark where its operations are CPU bound. This 

type of operations spend the majority of its execution time waiting for the CPU 
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resource, which results in a high average CPU utilization. In our experiment with 

pagerank workloads, the highest record of the average CPU utilization was 75.98% 

while processing a 5 GB (5000000 pages) workload on a 3-nodes (one NameNode and 

two DataNodes) Hadoop cluster, during a 29 minutes period of time, as shown in the 

fully detailed results’ tables�in Appendix B. Figure 5.1.4.1 shows the power 

consumption of processing different Pagerank workloads at different number of 

Hadoop cluster’s nodes.�

(a) (b) 
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(c) (e) 

(d) (f) 

Figure 5.1.4.1: Power Consumption vs Pagerank Workloads on Hadoop Cluster 

Using the HiBench Pagerank benchmark configuration we generated different 

workload size by using different number of pages i.e. 35000000 pages for generating a 
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35 GB workload, 50000000 pages for generating a 50 GB workload….etc. while we 

processed the generated workloads on different numbers of Hadoop cluster’s nodes.�

The complete experimental results for all the Pagerank workloads and the cluster’s 

resource utilization is shown in Appendix B. 

5.1.5 Kmeans 

Kmeans, a machine learning benchmark which is another CPU bound 

benchmark. In this experiment we observed an average CPU utilization of 91.19%, 

while processing a 17.5 GB workload (16 clusters, number of samples 30000000, and 

6000000 samples per input file) on 3-nodes (one NameNode and two dataNodes) 

Hadoop cluster, during a 1 hour and 38 minutes period of time. Figure 5.1.5.1 shows the 

power consumption of processing different Kmeans workloads on Hadoop cluster. 

(a) (b) 
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(c) (e) 

(d) (f) 

Figure 5.1.5.1: Power Consumption vs Kmeans Workloads on Hadoop Cluster 

Using the HiBench Kmeans benchmark configuration we generated different 

workload size by changing the number of clusters at a fixed number of samples of 

30000000 and a fixed number of samples per input file of 6000000. For example to 
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generate a 20 GB workload we set number of clusters to 18, number of samples 

30000000, and the number of samples per input file to 6000000, and so on and so forth 

for each workload, we just change the number of clusters. Then we processed the 

generated workloads on different numbers of Hadoop cluster’s nodes. 

The complete experimental results for all the Kmeans workloads and the cluster’s 

resource utilization are shown in Appendix B. 

Note that in our study the workload processing time was not a concern, as we 

assumed batch job processing where the execution time is not a significant factor. Our 

main goal of observation was finding out the minimum power consumption for 

processing a certain workload (data size) on a certain number of nodes with achieving 

maximum resource utilization, regardless the execution time that is taken. 

5.2 Phase 2: Prediction Model Implementation 

The collected data from phase 1 was used to train three supervised ML models 

which are; logistic regression, random forest classifier with 100 estimators, and Support 

Vector Machine (SVM) classifier with a kernel of 5th order polynomial function, wherein 

we compared the models according to each their prediction accuracy scores. As we 

mentioned before that our study goal is to find out the number of nodes that consume 

the minimum amount of power to execute a certain workload in Hadoop cluster. The 

collected data which is used to train the ML models is defined with two features; the 
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workload type�i.e. Wordcount, Sort…etc., the workload size i.e. 65 GB, 70 GB…etc., and�

one label which is the hardware resources needed for consuming the minimum amount 

of power to process the workload i.e. as a result of our experiment, the ML model would 

predict cluster resources of (4 x 2.4GHz CPUs (16 cores) + 1 x 2.5GHz CPU (4 cores)), 36 

GB of memory, and storage space of 1369 GB for processing a 80 GB Terasort workload. 

More on ML model and the experiment result analysis will be discussed in chapter 6. 

5.2.1 Collecting Training Data 

We categorized the hardware resources in our Hadoop cluster into 6 categories 

as shown in Table 5.2.1.1: 

Table 5.2.1.1: Hardware Resources Categories in Hadoop Cluster 

Resources 

Category 

CPU (GHz) Memory 

(GB) 

Storage 

(GB) 

1 2 x 2.4 CPUs (8 cores) 16 456 

2 3 x 2.4 CPUs (12 cores) 20 684 

3 4 x 2.4 CPUs (16 cores) 28 912 

4 4 x 2.4 CPUs (16 cores) + 1 x 2.5 CPU (4 cores) 36 1369 

5 4 x 2.4 CPUs (16 cores) + 1 x 2.5 CPU (4 cores) + 

2.3 CPU (4 cores) 

52 1837 

6 4 x 2.4 CPUs (16 cores) + 1 x 2.5 CPU (4 cores) + 

2 x 2.3 CPUs (8 cores) 

68 2305 

Based on our experimental results from phase 1 and our study goal, we collected 

5 datasets, each dataset represents the experimental results of one of the five 

benchmarks Terasort, Sort, Wordcount, Pagerank and Kmeans. The 5 datasets include 
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124 data record, each data record has two features (Operation type, Data size) and a 

label (Resource category). 

Unlike the traditional Hadoop cluster benchmarking studies, our experiment 

approach is to process different workloads (within different data size ranges) on 

different number of Hadoop cluster nodes (2-nodes to 7-nodes), measure the power 

consumption accompanied with each workload execution. Based on power 

consumption observations we were able to figure out an optimal number of Hadoop 

cluster nodes which consume the minimum amount of power to complete a certain 

workload job execution. 

Considering the aforementioned, we did not have to process and observe the 

same workloads within a certain data size range on each of the Hadoop cluster’s nodes 

category (Table 5.2.1.1 shows the Hadoop cluster nodes categories). Hence, once we 

observe that the power consumption for processing workloads in a certain data size 

range on a certain cluster’s nodes�category, starts to show increase in power 

consumption, than the power consumption of processing the same workloads or a few 

of it within the same data size range on a lower cluster’s�nodes category. Then we infer 

that we do not have to observe processing any workload within this data size range on 

a higher cluster’s nodes category, because the result would be more increase of the 

power consumption for any workload within this data size range, which is unnecessary 

for our experimental objectives. Therefore, we can notice in Figure 5.2.1.1 that the 
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workload experimental frequency is not uniformly distributed on the workload sizes in 

our study, regardless of the operation type. 

Let’s take the Sort workloads as an example to explain our experiment approach, 

when we look at Appendix B the Sort Workload Characterization section, we can notice 

that the power consumption for processing workloads in the data size range from 25 GB 

to 65 GB on 2-nodes (1 NameNode and 1 DataNode) Hadoop cluster is lower than 

processing the same workloads on 3-nodes cluster. The power consumption result of 

processing the workloads on 2-nodes cluster was then suffices to infer that there is no 

need for us to process the entire workloads range from 25 GB to 65 GB on 4-nodes 

cluster, since the power consumption would increase, as we can see the power 

consumption of processing 40 GB and 65 GB workloads on the 4-nodes cluster. 

Furthermore, we can infer that the workloads within data size range below 25 GB will 

consume lower power when it is processed on 2-nodes cluster. Figure 5.2.1.2 depicts the 

difference in power consumption of processing workloads in the data size range from 

25 GB to 65 GB on 2-nodes and 3-nodes Hadoop cluster as we explained before. The 

same approach applied on workloads from 67.5 GB to 72.5 GB. For example, the power 

consumption of processing 70 GB on 5-nodes cluster is lower than the power 

consumption of processing 70 GB on 4-nodes cluster, and is lower than the power 

consumption of processing 72.5 GB on 3-nodes cluster, the same for the workload 72.5 

GB, therefore, we infer that an energy-aware Hadoop framework would process the 
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workloads from 67.5 to 72.5 GB on 5-nodes Hadoop cluster, and no need of processing 

the workloads 67.5 GB and 70 GB on 3-nodes cluster, and as we mentioned before that 

2-nodes Hadoop cluster failed to process any workload that is above 65 GB due to the 

storage capacity limitations. Figure 5.2.1.3 shows the power consumption comparisons 

of processing both workloads 70 GB and 72.5 GB on 4-nodes and 5-nodes Hadoop 

cluster. In addition, the power consumption of processing workload of 72.5 GB on 6-

nodes cluster was much higher than processing the same workload on 3, 4, 5, and 6-

nodes cluster, hence, it was unnecessary to experiment processing other workloads on 

the 6-nodes and 7-nodes cluster. Figure 5.2.1.4 shows the power consumption of 

processing a 72.5 GB workload on 3, 4, 5, and 6-nodes cluster. 

Figure 5.2.1.1: Workload Size Frequency in the Study 
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Figure 5.2.1.2: Processing 25 GB –�65 GB on 2 & 3-Nodes Hadoop Cluster 

Figure 5.2.1.3: Processing 70 GB & 72.5 GB on 4 & 5-Nodes Hadoop Cluster 
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Figure 5.2.1.4: Processing 72.5 GB on 3, 4, 5, & 6-Nodes Hadoop Cluster 

The same experimental approach was applied on the other four benchmarks 

(Terasort, Wordcount, Pagerank, and Kmeans) in order to collect the dataset which was 

used later to train the ML model. A sample of the collected dataset during the 

experiment is shown in Table 5.2.1.2 below: 

Table 5.2.1.2: A Sample of the Training Dataset 

Workload 

Type 

Data Size 

(GB) 

Resource 

Category 

Kmeans 0.75 1 

Terasort 0.5 1 

Terasort 67.5 4 

Terasort 57.5 1 

Terasort 60 1 

Pagerank 35 4 

Terasort 55 1 

Pagerank 2.5 4 
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Sort 1 1 

Terasort 85 4 

Sort 72.5 4 

wordcount 12.5 1 

Sort 50 1 

wordcount 37.5 3 

Sort 2.5 1 

wordcount 30 2 

Terasort 50 1 

Terasort 1 1 

Terasort 80 4 

Pagerank 0.5 5 

Kmeans 0.75 1 

Terasort 0.5 1 

Terasort 67.5 4 

Terasort 57.5 1 

Terasort 60 1 

Figure 5.2.1.5 shows a scattering plot for the workload data sizes distribution 

against the Hadoop cluster hardware categories, regardless of the workload type. 

Figure 5.2.1.6 shows a descriptive statistics of the dataset, wherein the second column 

from the left concludes statistics about the [Data Size (GB)] column in Table 5.2.1.2, and 

the third column concludes statistics about the [Resource Category] column in Table 

5.2.1.2. 
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Figure 5.2.1.5: The workload data sizes distribution against the cluster resource categories 

Figure 5.2.1.6: Descriptive Statistics of the Dataset 

To illustrate the approach of our energy-aware Hadoop cluster, when we look at 

Table 5.2.1.1, Table 5.2.1.2 and Appendix B under the (Wordcount Workload 

Characteization) section, for the cluster to process a 30 GB Wordcount workload, the 

framework will decommission (disconnect a node from the cluster and do not process 

any tasks on it) or power off 4-DataNodes from the 7-nodes cluster, and process the 30 

GB Wordcount workload on a 3-nodes (1 NameNode and 2 DataNodes) Hadoop 
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cluster, wherein the process will consume 0.086 KWh of power, which represents a 

reduction in the power consumption by at most 51.96% than processing this Wordcount 

workload on the entire 7-nodes Hadoop cluster in the experiment, and reducing power 

consumption by at least 3.37% than processing this workload on 4-nodes Hadoop 

cluster. More on the result analysis will be discussed in Chapter 6. 

5.2.2 Data Preprocessing and Model Training 

In order to obtain high accuracy of a ML model, dataset in the study has to get 

through a pipeline of preparation processes, starting from loading the dataset until 

training the model. The steps of preparation the dataset are shown below: 

 Loading the dataset: We loaded our experimental data from “Data.xlsx” 

spreadsheet using Python 3 pandas library into jupyter Notebook. 

 Extracting the features and the target values: We have two features in the dataset; 

‘Workload Type’�and ‘Data Size (GB)’, we loaded their values in a variable and 

we loaded the target ‘Resource Category’ values into another variable for further 

data processing. 

 One-hot encode data: In order�to use the categorical feature ‘Workload Type’ for�

training the ML model, we encoded (binary variables representation) this feature 

using the get_dummies() method from pandas. Figure 5.2.2.1 below shows the 

first 5 rows in the dataset after the one-hot data encoding. 
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Figure 5.2.2.1: One-hot Data Encoded 

 Convert data into arrays: We converted the features and the label data into arrays 

using numpy python library, to prepare for data splitting. 

 Splitting the dataset: We split the dataset (124 data records) into 85% for training 

the model, and 15% of the dataset for testing the trained model on unseen data 

and evaluate the model accuracy. 

 Standardized scaler: In order to ensure that there will not be feature data with high 

order of magnitude that will dominate the ML estimator, we rescaled the 

features (training and testing features) using standardized scaler, as a method to 

avoid the high variation in the data magnitudes. 

 ML model training: We instantiated three ML models; logistic regression, random 

forest classifier, and support vector machine classifier. We fitted the three models 

with the same training dataset. 

 ML model prediction evaluation: The three ML models were evaluated against the 

same test dataset, where we generated the confusion matrix and classification 

report for each model, for us to compare and decide which one is more suitable 
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for our energy-aware Hadoop framework. The SVM and the random forest 

classifiers performed the same with a higher degree of accuracy than the logistic 

regression model. We will discuss more about the ML models testing results in 

chapter 6. 
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Chapter 6. Results Analysis and Conclusion 

6.1 Workload Profiling Analysis 

Our experiment observations show that as we increased the number of the 

cluster’s nodes�i.e. to 6-nodes or 7-nodes Hadoop cluster, when processing I/O bound 

jobs such as Terasort and Sort; the power consumption increased significantly. 

6.1.1 Terasort Workload Profiles 

In this section, we are going to demonstrate the Hadoop cluster’s�power 

consumption at different Terasort workloads, and explain our approach of profiling 

these workloads. Figure 6.1.1.1 shows that the Terasort workloads in the range from 1 

GB to 65 GB consume less power when we process them on 2-nodes cluster, based on 

Table 5.2.1.1, 2-nodes cluster is a resource category 1, therefore, we state that the 

Terasort workloads in the range from 1 GB to 65 GB require resource category 1. In 

addition, Figure 6.1.1.2 shows that the power consumption of processing a 65 GB 

Terasort workload on 2-nodes cluster (category 1) is lesser than processing the same 

workload on the other cluster resource categories (refer to Table 5.2.1.1). Similarly, 

Figure 6.1.1.3 shows that the profile of the 75 GB and 80 GB Terasort workloads would 

be category 4, processing 75 GB & 80 GB Terasort workloads consume less power on 5-

nodes cluster than processing them on the other cluster resource categories. We can find 

the rest of the Tearsort workload profiles in Appendix B. 
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Figure 6.1.1.1: Resources required to Process 1 GB –�65 GB Terasort Workload 

Figure 6.1.1.2: Resources required to Process 65 GB Terasort workload in our Experiment 
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Figure 6.1.1.3: Resources required to Process 75 GB & 80 GB Terasort Workload 

6.1.2 Sort Workload Profiles 

In this section, we are going to demonstrate the Hadoop cluster’s�power 

consumption at different Sort workloads. In chapter 5, Figure 5.2.1.2 shows that the 25 

GB –�65 GB Sort workload’s profile is the category 1 cluster resource (refer to Table 

5.2.1.1). Figure 6.1.2.1 below shows that the power consumption of processing 40 GB & 

65 GB Sort workloads on 2-nodes cluster (category 1) is lesser than processing the same 

workloads on the other cluster resource categories. In chapter 5, Figure 5.2.1.3 shows 

that the profile of 70 GB & 72.5 GB Sort workloads is category 4 which is 5-nodes 

cluster. We can find the rest of the Sort workload profiles in Appendix B. 



 
 

 

   

   

   

 

  

      

  

 

 

   

58 

Figure 6.1.2.1: Resources required to Process 40 GB –�72.5 GB Sort workload 

6.1.3 Wordcount Workload Profiles 

In this section, we are going to demonstrate the Hadoop cluster’s�power 

consumption at different Wordcount workloads. Figure 6.1.3.1 shows that the 

Wordcount workloads 20 GB & 22.5 GB consume less power when we process them on 

2-nodes cluster which is a resource category 1 (refer to Table 5.2.1.1). The Wordcount 

workloads 25 GB, 27.5 GB, and 30 GB consume less power when we process them on 3-

nodes cluster which means that they have a category 2 resource profile. Figure 6.1.3.2 

shows that processing a 37.5 GB Wordcount workload on 4-nodes cluster consume less 

power, therefore, the Wordcount workload 37.5 GB has a category 3 resource profile. 

We can find the rest of the Wordcount workload profiles in Appendix B. 
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Figure 6.1.3.1: Resources required to Process 20 GB –�30 GB Wordcount workload 

Figure 6.1.3.2: Resources required to Process 25 GB –�37.5 GB Wordcount workload 
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6.1.4 Pagerank Workload Profiles 

In this section, we are going to demonstrate the Hadoop cluster’s power�

consumption at different Pagerank workloads. Figure 6.1.4.1 shows that 1 GB Pagerank 

workload consumes less power it is processed on 6-nodes cluster which means that 1 

GB Pagerank workload has a category 5 resource profile (refer to Table 5.2.1.1), 

similarly, the 2.5 Pagerank workload has a category 4 resource profile. Figure 6.1.4.2 

Figure 6.1.4.1: Resources required to Process 1 GB & 2.5 GB Pagerank workload 

Figure 6.1.4.2 and Figure 6.1.4.3 show that 5 GB, 10 GB, 25 GB, and 35 GB consume less power 

when they are processed on a 5-nodes cluster, which means that they have a category 4 resource 

profile. We can find the rest of the Pagerank workload profiles in Appendix B. 
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Figure 6.1.4.2: Resources required to Process 5 GB & 10 GB Pagerank workload 

Figure 6.1.4.3: Resources required to Process 25 GB & 35 GB Pagerank workload 
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6.1.5 Kmeans Workload Profiles 

In this�section, we are going to demonstrate the Hadoop cluster’s power�

consumption at different Kmeans workloads. Figure 6.1.5.1 shows that 1 GB and 5 GB 

Kmeans workloads consume less power when they are processed on 2-nodes cluster, 

which means that they have a category 1 resource profile (refer to Table 5.2.1.1), also, 

the Kmeans workload of 22.5 GB consume less power when it is processed on 6-nodes 

cluster, which means that 22.5 GB Kmeans workload has a category 5 resource profile. 

We can find the rest of the Kmeans workload profiles in Appendix B. 

Figure 6.1.5.1: Resources required to Process 1 GB –�22.5 GB Kmeans workload 
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6.1.6 Key Observations 

In our study, it has been proven that while processing a MapReduce job in 

Hadoop cluster, despite of the workload size and type, the NameNode consumes the 

lowest amount of power in the cluster to complete the job, see our experiment 

observations in Appendix B. 

Scaling up Hadoop cluster size (commissioning more DataNodes to the cluster) 

to process a MapReduce job, does not always lead to an increase of the power 

consumption i.e. in our experimental setup, processing a 1 GB Pagerank workload on 6-

nodes Hadoop cluster (1 NameNode and 5 DataNodes) would consume a power of 

0.014 KWh, which represents approximately a 41.67% reduction in the cluster power 

consumption than processing the same workload on only 2-nodes (1 NameNode and 1 

DataNode) of the cluster, as it would consume a power of 0.024 KWh. 

6.2 Machine Learning Models Evaluation 

As we mentioned in chapter 5, among the three ML models that we compared, 

the logistic regression was the model that had the lowest prediction accuracy score of 

89.47% on the testing data. Figure 6.2.1 shows the confusion matrix which describes the 

performance of the logistic regression classifier model on the testing dataset. The same 

testing dataset which is 19 data samples (15% split from the experimental collected data 

as we mentioned in chapter 5) was used to test the three ML models. 
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Figure 6.2.1: Confusion Matrix of the Logistic Regression Model 

The left vertical axis represents the true labels in the testing dataset and the horizontal 

axis represents the predicted labels. As we can see in Figure 6.2.1 there are 2 samples of 

the testing data were incorrectly predicted which are: the actual label 5 was predicted as 

label 4 once, and the actual label 2 was predicted as label 4 once, whereas the actual 

label 1 was correctly predicted, 13 times, and the actual label 4 was correctly predicted, 

4 times. Hence, the model accuracy score on the testing data is calculated as 17 correctly 

predicted labels out of 19 data samples equals to 89.47%. 

From the confusion matrix in Figure 6.2.1, the actual label 4 was predicted 6 

times, 2 of these predictions were false and 4 predictions were true, therefore, the 

4 
prediction precision of label 4 is × 100 ≈ 0.67% as shown in the classification report 

6 

(precision, recall, and f1-score) of the logistic regression model in Figure 6.2.2 below. 
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Figure 6.2.2: Classification Report of the Logistic Regression Model 

Another way of visualizing the model’s performance is shown in Figure 6.2.3, as 

it depicts the actual testing labels vs the predicted labels. 

Figure 6.2.3: Predicting the Testing Data in the Logistic Regression Model 

The SVM classifier performed exactly the same as the random forest classifier on the 

testing data by tuning its polynomial kernel function’s degree, wherein both classifier’s 
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accuracy scored is 94.74%. The�random forest classifier’ accuracy score 94.74% was obtained by 

our initial random forest classifier which was with 100 estimators. We experienced changing the 

number of the estimators by step of 100 to 1000 estimators, however, the random forest 

classifier accuracy did not change, as shown in Figure 6.2.4 below. 

Figure 6.2.4: Random Forest Classifier Accuracy Score with Different Estimators Value 

On the other hand, the SVM classifier accuracy score was increased linearly from 84.21% 

to 94.74% by changing the classifier polynomial kernel function’s degree�from 2 to 5 degrees, as 

shown in Figure 6.2.5 below. 

Figure 6.2.5: Effect of the Polynomial Kernel Function degrees on the SVM Classifier Acc. Score 
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The SVM classifier accuracy score with polynomial kernel function at degree 5 was the 

highest among the other kernel functions, as the accuracy score was 89.47%, 84.21%, and 78.95% 

with linear kernel function, rbf kernel function, and sigmoid kernel function, respectively as 

shown in Figure 6.2.6. 

Figure 6.2.6: SVM Classifier Accuracy Score against Different Kernel Function Types 

Since the random forest classifier and the SVM classifier (with polynomial kernel 

function at degree 5) have the same performance, then we are going to demonstrate the 

confusion matrix and the classification report of the random forest classifier and the 

same would apply to the SVM classifier performance results. 

Figure 6.2.7 shows that there is 1 sample of the testing data was incorrectly 

predicted which is: the actual label 2 was predicted as label 4 once, whereas the actual 

label 1 was correctly predicted, 13 times, the actual label 4 was correctly predicted, 4 
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times, and the actual label 5 was correctly predicted once. Hence, the model accuracy 

score on the testing data is calculated as 18 correctly predicted labels out of 19 data 

samples equals to 94.74%. 

Figure 6.2.7: Confusion Matrix of the Random Forest Classifier Model 

From the confusion matrix in Figure 6.2.7, the actual label 4 was predicted 5 

times, 1 of these predictions was false and 4 predictions were true, therefore, the 

4 
prediction precision of label 4 is × 100 = 0.80% as shown in the classification report 

5 

(precision, recall, and f1-score) of the random forest classifier model in Figure 6.2.8 

below. 
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Figure 6.2.8: Classification Report of the Random Forest Classifier Model 

Another way of visualizing the model’s performance is shown in Figure 6.2.9, as�

it depicts the actual testing labels vs the predicted labels. 

Figure 6.2.9: Predicting the Testing Data in the Random Forest Classifier Model 
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Since we have two ML models that perform the same on our testing dataset, we can use 

either model. Therefore, we decided to go further with the Random Forest Classifier as the 

prediction model in our energy-aware Hadoop cluster framework. 

6.3 Data Block Replications Impact 

As illustrated in Chapter 2, one of the most significant features of Hadoop HDFS 

is that it has a high machine failure tolerance. HDFS achieves the machine fail tolerance 

by splitting the input data into blocks and replicates these data blocks into the cluster’s 

DataNodes with a replication factor i.e. 1, 3…etc.�as if one machine fails or its 

connection with the NameNode gets broken or disrupted, the data is still accessible 

from the other machines. 

Data replication through the network of connected Hadoop cluster nodes 

consumes a good amount of power during the workload processing.  The replication 

factor in Hadoop configuration tells the HDFS how many replicas of the same data 

block will be placed in the cluster’s nodes. In our study, and throughout the entire 

experiment we have set the replication factor to 3 replicas, therefore all our observations 

of power consumption were based on using 3 replicas. 

In order to study the impact of the replication factor on the power consumption, 

we have changed the replication factor to 1 replica, then we tested this new replication 

factor on the processing of two types of workloads, Sort workload which is an I/O 



 
 

 

  

 

 

 

 

  

  

 

  

71 

bound operation, and Pagerank workload which is a CPU bound operation. We 

processed a 65 GB Sort workload on 2, 3, 4, and 5-nodes Hadoop cluster, and we 

processed a 10 GB Pagerank workload on 2, 3, 4, and 5-nodes Hadoop cluster. 

Figure 6.3.1 depicts the significant drop of the power consumption while using 

replication factor of 1. The power consumption of processing 65 GB Sort workload on 2-

nodes has been reduced by 7.84%, power consumption has been reduced by 40.24% 

when processing the same workload on 3-nodes, power consumption has been reduced 

by 33.74% when processing the same workload on 4-nodes, and power consumption 

has been reduced by 38.36% when processing the same workload on 5-bodes Hadoop 

cluster. As we can notice, in our energy-aware Hadoop framework, and if our Hadoop 

cluster is comprised of only 5-nodes (1 NameNode and 4 DataNodes), so, in this 

environment if we are using 1 replica while process a 65 GB Sort workload, then the 

framework will process this workload on the 5-nodes Hadoop cluster which will save at 

least 4.26% KWh of power, however, if we are using replication factor 3, then the 

framework will process the 65 GB Sort workload on 2-nodes (1 NameNode and 1 

DataNode) Hadoop cluster which will save at least 30.17% KWh of power. 
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Figure 6.3.1: Sort Workload-Data Block Replications Impact on Power Consumption 

Using the same assumption that our Hadoop cluster is only 5-nodes (1 

NameNode and 4 DataNodes) Figure 6.3.2 shows that in our energy-aware Hadoop 

framework, 10 GB Pagerank workload will be processed on 5-nodes in both cases of the 

replication factors, as we will save at least 11.86% KWh of power while using 

replication factor 1, and we will save at least 8.20% KWh of power while using 

replication factor 3. We can notice that power consumption has been reduced by 5.19% 

when processing 10 GB Pagerank workload on 2-nodes Hadoop cluster with replication 

factor 1, the power consumption has been reduced by 7.35% when processing the same 

workload on 3-nodes with replication factor 1, the power consumption has been 

reduced by 3.28% when processing the same workload on 4-nodes with replication 
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factor 1, and the power consumption has been reduced by 7.14% when processing the 

same workload on 5-nodes with replication factor 1. 

Figure 6.3.2: Pagerank Workload-Data Block Replications Impact on Power Consumption 

6.4 Energy-Aware Hadoop System Architecture 

When a client node submits a job to Hadoop NameNode, by default Hadoop 

framework will split the input data into data blocks, replicates the blocks in the cluster’s 

nodes based on replication factor, and then uses the cluster nodes resources to process 

and complete the job and stores the output file(s) in the HDFS, where the client can 

access it. 
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Figure 6.4.1 shows the default Hadoop framework architecture, the resource 

manager node decides upon the resources i.e. CPU, network resources, memory, disk 

space…etc. for each DataNode (refer to chapter 2 for more details). 

Figure 6.4.1: The Default Hadoop Cluster Framework before Integrating our Intelligent Module 

In the above architecture, the resource manager node maintains a live connection with 

all the DataNodes in the cluster in order to manage the job execution, and the resource 

provisioning decision does not take in the consideration the amount of power that will 

be consumed to execute the job, therefore, it is highly likely that a certain extra 

unnecessary amount of power will be consumed with each job execution process. 

On the contrary, our proposed energy-aware Hadoop framework does take in 

the consideration the minimum amount of power that is needed to execute a job, and so 

the cluster rescales up or down based on the minimum number of nodes that are 

required to complete the job. Figure 6.4.2 shows our proposed energy-aware Hadoop 
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framework, where the NameNode is equipped with a ML-based module that assists the 

resource manager in managing the cluster’s resources. 

Figure 6.4.2: Energy-Aware Hadoop Cluster Framework Equipped with our ML-based Module 

In the proposed framework, upon the NameNode (Master Node) receiving a job, based 

on the job profile (characteristics) the ML-based module will predict the minimum 

necessary cluster resources that are required to execute the job, based on the prediction 

number of DataNodes will be either decommissioned from the cluster or commissioned 

to the cluster to complete the job execution in an energy-aware environment. 

Example: Consider submitting a 37.5 GB Wordcount workload to Hadoop cluster 

framework that is shown in Figure 6.4.2, based on our experimental observation (see 

Appendix B) a 37.5 GB Wordcount workload would be processed on a 4-nodes Hadoop 

cluster (1 NameNode and 3 DataNodes). With the workload profile and the assistance 

of the ML-based module in the NameNode, the resource requirements (4-nodes) will be 



 
 

 

  

 

   

  

   

  

  

 

     

76 

predicted. Figure 6.4.3 shows the expected system behavior with the ML-based module 

assistance. 

Figure 6.4.3: Example of Decommissioning 3 DataNodes based on the ML-based Module 

Therefore, out of the 7-nodes in the cluster 3 Datanodes will be decommissioned (which 

means disconnected from the cluster, or put in standby mode, or completely powered 

off) from the cluster, and the 37.5 GB Wordcount workload will be processed on 4-

nodes cluster. Processing the workload on 4-nodes (the power consumption is 0.104 

KWh) instead of 7-nodes cluster (the power consumption is 0.225 KWh) would save 

about 53.78% of the operation’s�power consumption. 

6.5 Conclusion 

In this study, we have proved that enterprise datacenters can potentially increase 

their business profitability by decreasing the operating costs when adopting intelligent 
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solutions in production. The energy cost in datacenters while processing batch jobs can 

significantly be decreased, by reducing the operations power consumption through our 

proposed smart data placement solution in Hadoop clusters. Our results analysis 

showed that by augmenting the traditional Hadoop framework with our ML-based 

module which makes predictions based on the workload profile, the power 

consumption of processing workloads can be reduced by more than 50% in some cases. 

In addition, one of the most valuable observations in our study is that by 

decreasing the data blocks replication factor in Hadoop cluster, the power consumption 

can be reduced significantly. Such feature can be added to our ML-based module based 

on task requirements and business need. 

6.6 Future Work and Scalability 

Developing an energy-aware and auto-scale framework solution for Hadoop 

cluster can be one of the most promising continuation to our current study, where we 

can replace the manual commissioning/decommissioning technique of DataNodes by 

an intelligent framework that is able to facilitate Hadoop cluster scalability. In the 

production environment this auto-scale framework solution can be implemented in one 

of two ways: 

1- A standalone smart module that takes the decision by the leverage of ML 

algorithm on the required DataNodes to be connected with the NameNode in 
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Hadoop cluster, decommission the unneeded DataNodes, then place the data in 

the HDFS as a preparation step for processing in Hadoop cluster. 

2- An intelligent module integrated in Hadoop source code as a novel energy-

aware Hadoop distribution. In this framework, Hadoop delegates its preliminary 

phase of the resource management to the integrated module, which uses ML 

algorithm to energy-aware rescaling the cluster, then place the data in the HDFS 

for processing. 
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Appendix A 

The Hadoop cluster main configuration settings in this study are included in the 

following four files: 

core-site.xml configuration: 
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hdfs-site.xml configuration: 

As we can see in the above configuration that the replication factor in our expeiment is 

set to 3, and the data blocksize is set to 512 MB 
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mapred-site.xml configurations: 
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yarn-site.xml configuration: 
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Appendix B 

The below tables depict the study observations. The table’s column�[Data (GB)] 

represents the workload size in Giga Byte, the column [CPU] represents the average CPU 

utilization of the node while processing the corresponding data size that is shown in the 

table, the [Mem] column represents the average memory utilization, the [HDD] column 

represents the average storage utilization of the node while processing the corresponding 

workload, the [Exec Time] column represents the job execution time and the [Total 

Power] column represents�the entire cluster’s total power�consumption in (KWh) to 

complete the MapReduce job. 

Note 

The highlighted cells in the table indicate that X workload should be processed by Y 

number of nodes in order to consume the lowest amount of power in Hadoop cluster, 

which concludes our study�goal i.e. the optimal number�of cluster’s nodes for�processing 

a 65 GB Terasort workload with the lowest amount of power consumption is 2-nodes, 

and so on so forth for all the workloads shown in the tables. 

Terasort workload characterization 

 2-nodes Hadoop cluster 

NameNode DataNode 

Data 

(GB) CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 
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0.25 4.61 23.52 8.00 43.72 23.75 3.00 0:05 0.004 

0.5 4.11 23.45 8.00 43.55 23.99 3.00 0:06 0.004 

0.75 3.95 23.47 8.00 44.62 25.13 3.00 0:06 0.005 

1 3.68 23.68 8.00 44.62 26.44 3.00 0:06 0.005 

2.5 3.11 23.74 8.00 50.49 26.58 6.00 0:09 0.008 

5 2.29 23.83 8.00 48.57 27.75 9.00 0:13 0.012 

7.5 1.92 23.57 8.00 49.20 27.17 9.00 0:18 0.014 

10 1.71 24.14 8.00 48.49 29.25 16.00 0:23 0.020 

12.5 1.52 24.37 8.00 44.95 27.00 13.00 0:28 0.025 

15 1.41 24.11 8.00 44.52 27.99 17.00 0:34 0.027 

17.5 1.28 24.38 8.00 42.71 27.40 24.00 0:40 0.032 

20 1.24 24.78 8.00 42.92 27.26 22.00 0:45 0.036 

22.5 1.24 24.20 8.00 50.92 27.78 26.00 0:44 0.037 

50 0.86 25.40 8.00 36.24 28.72 59.00 1:54 0.084 

65 0.79 26.07 36.00 34.02 24.14 88.00 2:33 0.114 

 3-nodes Hadoop cluster 

NameNode Datanode 1 DataNode 2 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

0.25 7.18 23.23 8.00 34.54 38.42 2.00 50.60 20.26 3.00 0:03 0.004 

0.5 6.42 23.02 8.00 31.90 38.12 3.00 50.32 20.42 3.00 0:03 0.006 

0.75 6.44 22.64 8.00 34.54 39.25 3.00 56.75 21.18 3.00 0:04 0.005 

1 6.25 23.63 8.00 43.11 40.90 3.00 45.91 20.15 3.00 0:03 0.005 

15 1.60 24.14 8.00 25.81 47.51 12.00 33.11 26.90 17.00 0:28 0.032 

17.5 1.62 24.38 8.00 34.19 50.08 15.00 30.18 28.79 13.00 0:29 0.035 

20 1.56 24.75 8.00 37.54 48.72 16.00 34.04 29.35 16.00 0:29 0.038 

22.5 1.53 24.30 8.00 34.96 46.09 17.00 38.19 27.24 23.00 0:31 0.042 

50 1.11 25.22 8.00 27.24 46.75 34.00 32.88 26.45 49.00 1:12 0.093 

62.5 0.87 25.85 36.00 18.78 46.38 39.00 28.30 22.35 48.00 1:54 0.128 

65 0.88 25.68 36.00 21.63 37.94 40.00 27.66 22.76 50.00 1:53 0.127 

67.5 0.89 25.32 36.00 25.58 37.33 49.00 25.90 21.35 45.00 1:54 0.131 

70 0.89 24.73 36.00 24.48 37.75 51.00 24.60 21.46 48.00 1:58 0.132 

72.5 0.86 25.43 36.00 19.16 36.61 51.00 27.65 22.51 57.00 2:07 0.141 

75 0.84 25.18 36.00 20.24 37.48 66.00 25.82 21.89 52.00 2:10 0.145 

77.5 0.86 25.89 36.00 19.81 36.02 45.00 31.47 22.89 62.00 2:07 0.147 

80 0.82 25.43 36.00 15.64 37.05 55.00 27.74 21.60 61.00 2:32 0.163 

82.5 0.80 25.61 36.00 20.51 46.78 53.00 25.43 22.08 60.00 2:27 0.163 
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 4-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 DataNode 3 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

65 0.98 25.36 36.00 22.26 46.72 46.00 21.53 22.48 48.00 29.87 21.58 36.00 1:28 0.135 

72.5 1.02 25.59 36.00 19.45 35.45 43.00 23.91 22.33 51.00 25.40 21.40 43.00 1:35 0.145 

75 0.98 25.36 36.00 20.48 34.47 46.00 26.38 22.47 47.00 26.91 21.86 46.00 1:32 0.148 

77.5 0.98 25.45 36.00 20.06 34.89 45.00 28.48 21.40 52.00 24.54 23.78 49.00 1:40 0.158 

80 0.90 25.49 36.00 15.54 45.26 51.00 22.23 21.21 47.00 27.56 21.34 56.00 1:52 0.171 

82.5 0.92 25.40 36.00 21.12 40.62 48.00 24.05 21.03 50.00 24.52 21.34 53.00 1:52 0.173 

85 0.95 25.41 36.00 16.61 36.83 56.00 26.27 21.36 60.00 24.19 20.56 51.00 1:54 0.173 

100 0.75 25.96 35.00 15.13 36.74 63.00 19.13 20.63 58.00 26.38 20.39 70.00 2:19 0.209 

 5-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 DataNode 3 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD 

62.5 1.17 25.24 36.00 18.79 46.41 30.00 22.11 20.37 34.00 26.87 20.78 30.00 

65 1.18 24.97 36.00 22.44 43.76 31.00 18.23 21.31 30.00 26.08 20.59 34.00 

67.5 1.16 24.89 36.00 21.64 44.99 36.00 21.68 21.88 31.00 22.10 19.80 34.00 

70 1.12 25.23 36.00 17.53 34.21 36.00 21.43 20.95 35.00 23.94 20.89 30.00 

72.5 1.13 25.26 36.00 15.36 33.89 34.00 20.12 22.15 35.00 21.88 19.36 31.00 

75 1.10 25.28 36.00 20.76 34.00 39.00 21.47 21.35 38.00 28.82 20.90 36.00 

77.5 1.10 24.96 36.00 17.90 36.90 40.00 23.89 21.56 33.00 25.68 21.42 38.00 

80 1.03 25.14 36.00 18.07 36.82 41.00 23.44 22.74 35.00 20.78 19.97 41.00 

82.5 1.08 25.60 36.00 22.33 43.58 44.00 27.86 21.46 43.00 23.34 24.00 37.00 

85 1.04 25.35 36.00 19.61 45.11 37.00 21.32 21.99 38.00 23.82 19.68 34.00 

100 0.85 25.54 35.00 14.48 37.03 43.00 20.13 22.40 44.00 23.86 19.47 49.00 

DataNode 4 

Data 

(GB) CPU Mem HDD 

Exec 

Time 

Total 

Power 

62.5 16.60 20.25 15.00 1:05 0.118 

65 21.67 20.81 17.00 1:03 0.118 

67.5 17.73 20.71 17.00 1:09 0.128 

70 18.02 19.96 19.00 1:11 0.132 

72.5 23.16 20.50 20.00 1:12 0.130 

75 16.74 21.39 18.00 1:14 0.141 
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77.5 13.41 24.33 21.00 1:22 0.150 

80 17.05 20.31 18.00 1:26 0.155 

82.5 17.40 19.28 19.00 1:18 0.154 

85 18.03 19.62 25.00 1:30 0.166 

100 13.28 18.69 25.00 1:53 0.201 

 6-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 DataNode 3 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD 

65 0.93 25.30 35.00 16.58 35.11 31.00 18.75 25.80 24.00 19.22 21.96 30.00 

67.5 0.91 25.35 35.00 16.88 33.40 30.00 19.71 20.48 27.00 18.00 19.39 25.00 

70 0.89 26.23 35.00 16.27 34.30 27.00 20.98 21.26 29.00 20.07 21.27 26.00 

75 0.89 26.17 35.00 15.64 33.41 31.00 19.03 20.39 28.00 16.72 19.56 31.00 

80 0.89 25.45 35.00 15.87 35.77 31.00 18.72 21.24 31.00 16.60 18.92 28.00 

100 0.77 25.68 35.00 13.98 33.35 32.00 16.25 20.03 35.00 18.34 18.66 37.00 

DataNode 4 DataNode 5 

Data 

(GB) CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

65 13.08 20.55 12.00 17.66 16.12 12.00 1:32 0.163 

67.5 11.88 19.66 12.00 27.54 18.66 15.00 1:30 0.167 

70 13.45 19.86 14.00 18.26 17.06 12.00 1:34 0.171 

75 13.75 20.38 14.00 28.35 16.00 16.00 1:35 0.174 

80 14.92 19.12 16.00 30.95 16.49 17.00 1:38 0.181 

100 10.98 17.80 20.00 27.75 16.23 22.00 2:13 0.235 

 7-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 DataNode 3 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD 

65 1.94 26.33 35.00 15.66 32.77 26.00 14.52 21.31 22.00 16.88 20.06 22.00 

67.5 1.95 27.13 35.00 11.96 32.75 24.00 14.32 21.22 21.00 16.51 19.75 21.00 

70 0.88 25.83 35.00 13.50 32.64 27.00 13.96 19.89 24.00 16.65 20.28 23.00 

75 0.86 26.49 35.00 12.11 32.75 26.00 16.47 20.56 26.00 15.51 18.68 24.00 

80 0.80 27.39 35.00 14.60 31.23 32.00 15.07 20.31 25.00 14.22 18.63 22.00 
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DataNode 4 DataNode 5 DataNode 6 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

65 11.09 20.51 10.00 19.15 18.82 12.00 22.18 20.73 10.00 1:36 0.177 

67.5 16.51 19.75 21.00 19.23 19.44 11.00 19.23 19.44 11.00 1:48 0.195 

70 11.58 18.85 9.00 16.70 16.62 11.00 23.28 16.48 12.00 1:45 0.194 

75 12.92 18.67 13.00 15.86 15.95 13.00 16.22 17.33 11.00 1:59 0.223 

80 13.24 21.37 14.00 15.48 16.79 11.00 20.48 16.20 14.00 2:01 0.221 

Sort workload characterization 

 2-nodes Hadoop cluster 

NameNode DataNode 

Data 

(GB) CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

25 2.14 24.06 11.00 23.64 28.57 25.00 1:01 0.045 

35 3.45 24.68 16.00 27.53 27.05 39.00 1:05 0.047 

40 2.25 24.75 35.00 24.00 23.28 48.00 1:29 0.062 

45 3.50 24.99 29.00 23.85 26.13 53.00 1:30 0.070 

55 3.57 25.25 29.00 22.50 25.94 57.00 1:53 0.088 

60 2.42 24.99 29.00 22.15 26.90 60.00 2:05 0.087 

62.5 2.48 25.55 29.00 21.65 26.66 61.00 2:13 0.092 

65 2.49 25.09 29.00 21.09 28.56 74.00 2:22 0.102 

 3-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

25 1.84 24.28 11.00 16.08 43.69 34.00 17.76 25.91 34.00 1:14 0.086 

35 3.34 25.09 16 17.52 42.36 43 21.13 25.04 50 1:19 0.087 

40 2.20 24.05 35 18.13 36.30 39 22.37 22.64 40 1:09 0.073 

55 3.01 25.13 29 12.24 43.72 50 17.14 24.88 52 1:58 0.135 

65 1.83 25.94 29 11.74 42.50 60.00 15.04 25.75 68.00 2:38 0.169 

72.5 1.90 25.45 29 10.40 43.02 66.00 14.49 25.05 81.00 2:49 0.185 
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 4-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 DataNode 3 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

40 1.53 24.24 35.00 14.84 35.75 42.00 17.87 21.00 41.00 17.83 20.97 40.00 1:16 0.103 

65 1.94 25.34 35.00 12.51 35.09 62.00 15.58 21.41 63.00 15.64 19.49 62.00 2:01 0.163 

67.5 2.02 24.84 38.00 12.63 33.96 65.00 14.74 21.91 65.00 14.62 19.85 64.00 2:09 0.171 

70 2.04 24.77 38.00 13.35 32.90 66.00 14.54 20.16 67.00 15.49 19.57 67.00 2:11 0.174 

72.5 2.27 24.58 38.00 13.60 33.85 69.00 14.57 20.98 70.00 15.98 19.74 69.00 2:06 0.171 

 5-nodes Hadoop cluster 

` NameNode DataNode 1 DataNode 2 DataNode 3 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD 

40 1.23 24.12 38.00 17.23 34.91 37.00 20.81 21.65 32.00 19.42 20.66 29.00 

65 2.13 23.97 38.00 13.15 32.61 52.00 15.03 22.26 49.00 16.29 21.42 46.00 

70 2.19 24.66 38.00 14.38 34.04 49.00 15.80 21.68 54.00 15.90 19.31 51.00 

72.5 2.11 24.52 38.00 13.47 34.88 50.00 13.83 20.67 55.00 13.88 19.73 53.00 

75 2.18 25.14 35.00 12.10 34.11 60.00 13.53 20.07 56.00 14.58 18.92 52.00 

DataNode 4 

Data 

(GB) CPU Mem HDD 

Exec 

Time 

Total 

Power 

40 14.83 19.82 16.00 0:52 0.091 

65 12.26 21.21 24.00 1:29 0.146 

70 13.28 18.39 25.00 1:34 0.154 

72.5 11.41 19.29 26.00 1:44 0.169 

75 11.23 18.79 27.00 1:51 0.178 

 6-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 DataNode 3 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD 

72.5 1.71 31.83 35.00 10.48 30.79 50.00 13.14 18.91 46.00 10.45 17.43 41.00 
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DataNode 4 DataNode 5 

Data 

(GB) CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

72.5 8.37 17.57 22.00 13.39 15.26 20.00 3:03 0.286 

Wordcount workload characterization 

 2-nodes Hadoop cluster 

NameNode DataNode 

Data 

(GB) CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

20 2.16 23.21 17.00 77.63 31.54 11.00 1:05 0.063 

22.5 2.01 23.51 18.00 75.33 29.82 13.00 1:14 0.070 

25 2.08 23.67 41.00 76.32 25.50 14.00 1:21 0.077 

27.5 2.05 23.35 19.00 76.80 27.30 15.00 1:28 0.084 

30 2.02 23.47 21.00 77.90 28.96 16.00 1:35 0.101 

 3-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

20 3.23 23.36 17.00 59.82 41.58 11.00 70.43 27.89 11.00 0:39 0.065 

22.5 3.27 24.06 18.00 44.52 44.92 12.00 83.09 27.12 13.00 0:44 0.075 

25 3.03 22.90 19.00 39.15 43.48 14.00 84.94 27.80 14.00 0:50 0.076 

27.5 2.92 23.74 42.00 71.19 40.47 15.00 67.96 21.58 15.00 0:49 0.079 

30 3.20 22.89 43.00 71.03 39.48 16.00 62.31 20.42 16.00 0:55 0.086 

32.5 2.82 23.05 44.00 64.96 43.75 17.00 76.08 25.44 18.00 0:55 0.092 

35 2.85 23.26 35.00 88.60 49.27 18.00 43.76 21.05 19.00 1:05 0.103 

37.5 2.90 23.92 36.00 42.38 43.97 19.00 84.46 23.35 20.00 1:13 0.116 

 4-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 DataNode 3 
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Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

22.5 4.35 23.84 45.00 33.90 28.04 13.00 33.18 17.15 14.00 36.49 18.11 13.00 0:58 0.096 

25 3.90 23.22 41.00 73.20 36.21 14.00 39.41 24.08 14.00 56.77 20.20 14.00 0:37 0.076 

27.5 3.80 22.89 42.00 34.76 40.55 15.00 59.94 21.12 15.00 78.02 22.36 15.00 0:40 0.085 

30 3.77 23.84 43.00 63.86 44.01 16.00 34.70 20.07 16.00 76.26 22.09 16.00 0:43 0.089 

32.5 3.86 23.58 34.00 81.43 48.30 17.00 64.99 21.68 18.00 39.51 21.27 17.00 0:44 0.095 

35 4.01 23.32 35.00 62.83 43.98 18.00 58.27 20.76 19.00 58.97 21.49 18.00 0:46 0.099 

37.5 4.10 24.09 36.00 70.60 48.04 19.00 58.90 20.55 20.00 65.20 20.19 19.00 0:47 0.104 

 5-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 DataNode 3 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD 

22.5 4.67 23.81 45.00 33.63 30.29 11.00 23.62 17.58 11.00 14.06 15.46 11.00 

25 4.66 23.95 46.00 22.35 27.13 11.00 33.10 18.01 11.00 24.57 18.29 11.00 

30 3.48 24.08 48.00 25.15 25.91 13.00 36.94 17.48 14.00 28.93 17.61 12.00 

37.5 3.62 23.22 52.00 25.32 25.86 15.00 19.33 16.77 17.00 34.64 16.73 15.00 

DataNode 4 

Data 

(GB) CPU Mem HDD 

Exec 

Time 

Total 

Power 

22.5 34.85 16.82 5.00 0:54 0.093 

25 27.57 17.10 6.00 0:58 0.104 

30 16.91 15.63 7.00 1:12 0.131 

37.5 27.93 15.53 8.00 1:24 0.152 

 6-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 DataNode 3 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD 

25 3.53 24.33 46.00 13.17 25.04 10.00 14.66 16.23 10.00 12.97 16.40 7.00 

30 2.52 24.38 48.00 20.88 25.61 11.00 14.58 16.19 12.00 10.01 15.16 11.00 

37.5 2.71 24.69 52.00 15.75 24.48 13.00 18.64 16.70 15.00 15.51 15.01 13.00 
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DataNode 4 DataNode 5 

Data 

(GB) CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

25 14.63 14.86 5.00 26.00 14.50 4.00 1:29 0.137 

30 10.57 15.75 5.00 18.81 14.64 5.00 1:43 0.160 

37.5 20.53 17.93 6.00 10.14 14.43 6.00 1:54 0.188 

 7-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 DataNode 3 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD 

25 2.40 22.84 46.00 12.60 23.64 9.00 13.20 17.54 9.00 12.61 16.59 9.00 

30 2.49 24.21 48.00 15.24 24.73 7.00 11.95 17.11 13.00 11.44 14.73 10.00 

37.5 2.41 24.24 52.00 14.51 23.15 11.00 7.74 15.16 11.00 10.58 14.61 11.00 

DataNode 4 DataNode 5 DataNode 6 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

25 8.88 14.12 4.00 9.61 14.26 4.00 9.61 14.12 4.00 1:34 0.157 

30 16.17 14.92 5.00 8.33 14.19 4.00 7.26 14.19 4.00 1:47 0.179 

37.5 15.54 14.56 7.00 7.77 14.21 4.00 11.01 14.51 5.00 2:16 0.225 

Pagerank workload characterization 

 2-nodes Hadoop cluster 

NameNode DataNode 

Data 

(GB) CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

1 1.71 24.44 30.00 63.67 23.94 4.00 0:25 0.024 

2.5 1.46 24.79 30.00 60.98 25.04 6.00 0:37 0.032 

5 1.19 24.77 30.00 56.22 25.72 8.00 1:00 0.052 

7.5 1.04 25.36 30.00 56.07 26.00 9.00 1:13 0.064 

10 1.05 24.81 30.00 55.14 25.76 9.00 1:26 0.078 
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 3-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

1 2.80 23.94 30.00 54.39 43.13 4.00 78.82 23.59 4.00 0:13 0.019 

2.5 2.38 24.90 30.00 56.46 42.99 4.00 73.69 26.54 7.00 0:18 0.031 

5 1.95 25.40 30.00 48.08 44.39 5.00 75.98 24.65 7.00 0:29 0.044 

7.5 1.74 24.94 30.00 48.08 42.73 6.00 75.47 24.87 10.00 0:35 0.057 

10 1.51 24.78 30.00 70.43 42.05 7.00 52.02 27.26 7.00 0:41 0.068 

 4-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 DataNode 3 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

1 3.90 24.65 30.00 62.34 32.88 4.00 74.48 20.35 4.00 64.22 25.08 4.00 0:09 0.018 

2.5 3.24 25.07 30.00 48.95 36.99 5.00 74.81 22.16 6.00 72.02 25.14 5.00 0:11 0.025 

5 2.49 25.28 30.00 68.53 36.27 6.00 47.36 22.76 8.00 75.90 27.10 8.00 0:17 0.038 

7.5 2.31 25.23 30.00 69.55 37.24 6.00 63.33 22.81 7.00 54.83 28.75 6.00 0:23 0.050 

10 1.88 25.36 30.00 62.04 36.53 13.00 52.41 21.68 7.00 68.54 26.50 7.00 0:28 0.061 

25 1.21 25.25 30.00 42.53 36.50 29.00 61.09 22.57 17.00 61.34 21.06 14.00 1:07 0.139 

 5-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 DataNode 3 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD 

1 4.95 24.84 30.00 68.04 30.90 3.00 56.11 19.12 4.00 64.85 23.21 3.00 

2.5 4.16 25.07 30.00 71.09 35.29 5.00 62.05 22.08 5.00 56.27 25.01 4.00 

5 3.23 25.08 30.00 55.66 36.46 7.00 57.75 20.93 7.00 66.76 26.45 4.00 

7.5 2.85 24.37 30.00 67.78 35.27 6.00 51.94 21.67 8.00 51.73 21.23 5.00 

10 2.41 24.85 30.00 64.43 37.18 11.00 50.48 23.15 7.00 53.77 21.27 5.00 

25 1.56 24.95 30.00 45.32 34.71 22.00 59.33 23.28 11.00 64.10 22.04 11.00 

35 2.62 24.84 35.00 40.92 34.48 29.00 58.68 23.24 16.00 53.22 20.19 15.00 

DataNode 4 



 
 

 

     

 

 

      

      

      

      

      

      

      

 

   

        

 

             

             

             

             

             

             

             

 

       
 

        

 

 

         

         

         

         

         

         

 

   

        

 

             

             

             

100 

Data 

(GB) CPU Mem HDD 

Exec 

Time 

Total 

Power 

1 60.41 18.68 1.00 0:07 0.018 

2.5 57.48 20.28 1.00 0:08 0.023 

5 66.71 22.15 2.00 0:12 0.032 

7.5 59.20 20.23 2.00 0:17 0.045 

10 58.28 20.85 2.00 0:21 0.056 

25 45.79 21.51 5.00 0:48 0.125 

35 43.89 19.78 7.00 1:10 0.177 

 6-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 DataNode 3 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD 

1 5.37 25.27 35.00 51.00 29.18 4.00 43.01 18.73 4.00 45.64 18.48 3.00 

2.5 3.66 25.49 35.00 45.46 33.81 5.00 43.16 19.96 5.00 46.35 19.63 5.00 

5 2.64 25.72 35.00 40.47 36.22 6.00 45.35 22.40 6.00 44.63 20.80 6.00 

10 1.87 24.93 35.00 35.80 35.28 6.00 41.84 22.40 7.00 36.31 21.97 6.00 

25 1.30 26.06 35.00 38.25 36.50 12.00 38.90 20.64 10.00 42.09 20.13 9.00 

35 2.42 24.16 35.00 33.94 32.45 17.00 35.72 19.30 14.00 33.31 18.88 13.00 

DataNode 4 DataNode 5 

Data 

(GB) CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

1 52.39 17.77 1.00 44.72 15.68 1.00 0:06 0.014 

2.5 40.37 18.22 2.00 30.75 16.74 2.00 0:10 0.026 

5 34.31 20.26 2.00 23.40 17.08 2.00 0:17 0.041 

10 32.27 19.39 2.00 27.36 17.47 2.00 0:31 0.070 

25 29.32 19.20 5.00 26.59 16.59 4.00 1:05 0.148 

35 26.15 18.60 6.00 30.14 16.98 5.00 1:39 0.213 

 7-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 DataNode 3 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD 

1 6.90 25.21 35.00 46.85 32.05 4.00 47.22 19.37 4.00 47.10 17.30 3.00 

2.5 4.73 25.93 35.00 36.01 31.59 5.00 34.12 20.09 5.00 42.15 18.12 4.00 
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25 2.14 25.65 35.00 19.22 32.40 16.00 27.55 19.44 18.00 28.03 19.12 9.00 

35 2.30 25.35 35.00 26.20 33.35 15.00 32.08 20.97 17.00 25.87 19.83 11.00 

DataNode 4 DataNode 5 DataNode 6 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

1 44.06 17.19 1.00 37.23 15.49 1.00 38.56 16.28 1.00 0:05 0.015 

2.5 33.33 17.72 2.00 28.35 16.49 2.00 30.93 15.68 1.00 0:11 0.028 

25 16.73 17.75 4.00 23.93 16.77 3.00 27.46 15.98 4.00 1:30 0.191 

35 20.75 18.29 5.00 22.39 16.24 5.00 24.16 15.93 1.00 1:58 0.257 

Kmeans workload characterization 

 2-nodes Hadoop cluster 

NameNode DataNode 

Data 

(GB) CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

1 1.89 24.73 30.00 71.88 26.92 8.00 0:18 0.018 

2.5 1.27 27.55 30.00 78.27 25.03 9.00 0:42 0.042 

5 1.31 24.65 30.00 81.11 24.55 8.00 0:38 0.036 

7.5 1.11 25.24 30.00 79.51 24.67 10.00 0:56 0.055 

10 0.99 25.57 30.00 83.73 24.75 12.00 1:15 0.076 

22.5 1.48 30.9 8.00 84.56 28.65 24.00 3:43 0.239 

 3-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

1 2.62 24.75 30.00 47.19 35.54 8.00 56.98 23.87 8.00 0:12 0.018 

2.5 1.78 24.99 30.00 68.81 38.07 9.00 66.66 26.28 9.00 0:26 0.039 

5 1.91 25.13 30.00 72.08 43.46 8.00 70.61 23.12 8.00 0:22 0.036 

7.5 1.51 25.69 30.00 78.14 39.98 10.00 65.38 28.06 10.00 0:36 0.054 

10 1.43 25.77 30.00 61.24 48.63 12.00 77.61 29.42 12.00 0:48 0.075 

12.5 2.15 25.76 30.00 79.79 40.69 15.00 71.24 24.39 16.00 1:03 0.104 

15 2.07 25.96 30.00 74.94 41.49 17.00 79.48 22.2 18.00 1:15 0.128 
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17.5 1.01 26.26 30.00 91.19 50.79 19.00 57.92 27.82 20.00 1:38 0.160 

20 0.86 26.58 30.00 85.20 50.13 21.00 65.62 27.9 22.00 1:53 0.187 

22.5 2.26 38.87 8.00 85.09 50.37 24.00 70.93 29.13 24.00 2:06 0.222 

 4-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 DataNode 3 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

1 2.94 26.10 30.00 44.28 37.70 8.00 60.78 23.05 8.00 41.73 20.69 8.00 0:11 0.022 

2.5 1.98 27.64 30.00 57.87 47.60 9.00 57.32 22.53 9.00 65.12 23.51 9.00 0:21 0.043 

5 2.25 25.32 30.00 62.15 47.65 8.00 61.65 23.25 8.00 69.35 23.84 8.00 0:17 0.036 

7.5 1.83 25.54 30.00 69.14 49.40 10.00 59.98 22.88 11.00 68.47 22.45 10.00 0:26 0.057 

10 1.55 25.80 30.00 67.70 47.78 12.00 66.68 23.69 12.00 65.37 22.25 12.00 0:35 0.078 

12.5 2.40 26.06 30.00 61.54 41.29 15.00 79.55 25.22 16.00 72.62 23.60 15.00 0:46 0.105 

15 1.19 26.39 30.00 69.08 39.34 17.00 73.19 23.10 18.00 74.07 20.91 17.00 0:55 0.127 

17.5 1.10 25.96 30.00 72.64 50.51 19.00 69.83 27.85 20.00 71.03 22.33 19.00 1:09 0.157 

20 1.06 26.87 30.00 73.44 49.63 22.00 75.60 27.66 22.00 78.12 23.90 22.00 1:18 0.182 

22.5 1.32 36.86 30.00 74.27 50.29 24.00 66.26 27.29 24.00 71.98 23.52 24.00 1:37 0.218 

 5-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 DataNode 3 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD 

1 3.41 25.83 30.00 54.61 36.43 7.00 44.17 20.90 7.00 54.61 21.87 7.00 

2.5 2.52 25.02 30.00 55.81 35.81 7.00 62.32 26.05 8.00 64.02 23.43 8.00 

5 2.58 25.28 30.00 66.59 38.82 8.00 57.39 21.50 7.00 60.54 21.37 6.00 

7.5 2.42 25.45 30.00 63.21 38.21 8.00 67.33 25.96 9.00 61.60 22.44 7.00 

10 1.93 25.78 30.00 63.89 39.27 10.00 65.97 23.39 9.00 69.30 23.50 11.00 

12.5 2.72 25.80 30.00 72.05 39.35 12.00 65.21 23.54 13.00 68.46 22.03 12.00 

15 1.56 25.99 30.00 66.60 41.31 14.00 70.93 24.25 13.00 70.35 22.73 13.00 

17.5 1.35 26.16 30.00 66.90 38.82 16.00 69.92 23.83 16.00 69.08 22.47 15.00 

20 1.76 37.55 30.00 64.20 49.03 17.00 70.55 27.48 17.00 71.29 25.16 16.00 

22.5 2.45 33.90 30.00 62.93 45.91 19.00 73.76 29.45 20.00 72.19 25.64 17.00 
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25 1.12 26.47 30.00 80.04 41.12 21.00 69.72 23.17 21.00 74.16 21.70 20.00 

DataNode 4 

Data 

(GB) CPU Mem HDD 

Exec 

Time 

Total 

Power 

1 39.20 18.80 3.00 0:09 0.022 

2.5 51.81 21.85 3.00 0:16 0.038 

5 55.38 23.36 3.00 0:15 0.038 

7.5 58.12 23.47 4.00 0:19 0.049 

10 53.00 21.96 4.00 0:27 0.068 

12.5 72.19 22.55 5.00 0:34 0.094 

15 69.93 22.17 7.00 0:41 0.113 

17.5 69.96 21.64 7.00 0:50 0.139 

20 67.87 27.76 8.00 0:59 0.179 

22.5 65.08 26.24 8.00 1:09 0.208 

25 73.78 21.66 10.00 1:18 0.224 

 6-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 DataNode 3 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD 

1 2.15 25.09 35.00 24.58 31.70 7.00 26.71 19.40 7.00 8.62 15.51 6.00 

2.5 2.18 25.60 35.00 40.16 32.36 7.00 42.70 22.11 9.00 29.18 19.50 7.00 

5 1.79 27.92 35.00 33.90 30.87 6.00 29.22 18.79 8.00 17.51 16.84 5.00 

7.5 1.95 25.77 35.00 38.56 36.05 8.00 32.19 19.97 9.00 31.32 18.25 8.00 

10 1.63 24.99 35.00 41.22 34.49 9.00 44.35 20.87 12.00 40.06 21.36 9.00 

12.5 1.47 26.28 35.00 47.48 36.04 11.00 44.92 21.21 12.00 43.97 22.70 11.00 

15 1.29 25.71 35.00 41.68 33.76 12.00 46.95 21.34 13.00 50.12 21.22 11.00 

17.5 1.29 26.10 35.00 49.13 33.40 13.00 53.35 23.62 14.00 53.83 21.44 13.00 

20 1.28 26.53 35.00 52.04 36.09 13.00 54.85 21.67 15.00 55.59 20.27 16.00 

22.5 1.26 27.23 35.00 60.06 36.35 17.00 54.25 23.37 17.00 62.70 22.51 16.00 

25 1.17 27.21 35.00 53.30 36.31 18.00 66.22 22.35 20.00 59.12 21.10 16.00 

DataNode 4 DataNode 5 

Data 

(GB) CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

1 20.76 16.31 3.00 20.20 15.15 2.00 0:18 0.032 

2.5 31.64 19.76 4.00 32.12 15.89 2.00 0:23 0.051 

5 33.67 18.83 3.00 28.58 16.34 3.00 0:26 0.051 
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7.5 38.41 19.24 4.00 26.31 16.23 3.00 0:25 0.052 

10 36.20 18.57 5.00 35.00 16.65 4.00 0:36 0.083 

12.5 36.29 19.00 5.00 38.21 16.69 5.00 0:49 0.116 

15 38.91 19.49 5.00 41.60 16.34 6.00 0:58 0.140 

17.5 47.56 19.95 7.00 46.78 17.66 6.00 0:58 0.147 

20 50.79 20.82 7.00 48.16 17.07 6.00 1:04 0.168 

22.5 53.84 21.41 7.00 48.99 17.18 7.00 1:10 0.190 

25 53.52 20.81 8.00 52.67 17.10 8.00 1:24 0.229 

 7-nodes Hadoop cluster 

NameNode DataNode 1 DataNode 2 DataNode 3 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD 

1 2.91 25.69 35.00 28.92 30.91 7.00 21.96 18.26 7.00 16.66 17.82 6.00 

5 2.92 25.81 35.00 22.42 27.11 6.00 27.12 18.40 7.00 23.11 17.94 5.00 

22.5 1.23 26.46 35.00 47.92 34.26 13.00 50.18 22.00 14.00 45.10 21.10 13.00 

DataNode 4 DataNode 5 DataNode 6 

Data 

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD 

Exec 

Time 

Total 

Power 

1 14.97 19.26 3.00 18.46 16.63 2.00 17.14 15.25 2.00 0:27 0.054 

5 17.77 17.08 3.00 19.42 15.81 2.00 38.90 17.20 3.00 0:28 0.060 

22.5 43.89 19.38 7.00 43.42 16.67 7.00 44.05 18.44 5.00 1:18 0.207 
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