
Columbus State University Columbus State University

CSU ePress CSU ePress

Theses and Dissertations Student Publications

5-2020

Improving Energy-Efficiency through Smart Data Placement in Improving Energy-Efficiency through Smart Data Placement in

Hadoop Clusters Hadoop Clusters

Ahmed Mostafa

Follow this and additional works at: https://csuepress.columbusstate.edu/theses_dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Mostafa, Ahmed, "Improving Energy-Efficiency through Smart Data Placement in Hadoop Clusters"
(2020). Theses and Dissertations. 392.
https://csuepress.columbusstate.edu/theses_dissertations/392

This Thesis is brought to you for free and open access by the Student Publications at CSU ePress. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of CSU ePress.

https://csuepress.columbusstate.edu/
https://csuepress.columbusstate.edu/theses_dissertations
https://csuepress.columbusstate.edu/student
https://csuepress.columbusstate.edu/theses_dissertations?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F392&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F392&utm_medium=PDF&utm_campaign=PDFCoverPages
https://csuepress.columbusstate.edu/theses_dissertations/392?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F392&utm_medium=PDF&utm_campaign=PDFCoverPages

COLUMBUS STATE UNIVERSITY

Improving Energy-Efficiency through Smart Data Placement

in Hadoop Clusters

A THESIS SUBMITTED TO

THE D. ABBOTT TURNER COLLEGE OF BUSINESS

TSYS SCHOOL OF COMPUTER SCIENCE

IN PARTIAL FULFILLMENT OF

THE REQUIRMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

APPLIED COMPUTER SCEINCE

BY

AHMED MOSTAFA

COLUMBUS, GEORGIA

2020

Copyright © 2020 Ahmed Mostafa

All Rights Reserved.

ABSTRACT

Hadoop, a pioneering open source framework, has revolutionized the big data world

because of its ability to process vast amounts of unstructured and semi-structured data.

This�ability�makes�Hadoop the ‘go-to’ technology�for�many industries�that generate big�

data, thus it also aids in being cost effective, unlike other legacy systems. Hadoop

MapReduce is used in large scale data parallel applications to process massive amounts

of data across a cluster and is used for scheduling, processing, and executing jobs.

Basically, MapReduce is the right hand of Hadoop, as its library is needed to process

these large data sets. In this research thesis, this study proposes a smart framework model

that profiles MapReduce tasks with the use of Machine Learning (ML) algorithms to

effectively place the data in Hadoop clusters; activate only sufficient number of nodes to

accomplish the data processing within the planned deadline time for the task. The model

will ensure achieving energy efficiency by utilizing the minimum number of necessary

nodes, with maximum utilization and least energy consumption to reduce the overall cost

of operations in data centers that deploy the Hadoop clusters.

Keywords: Hadoop, ML, Energy-Aware, Big Data, MapReduce, HDFS

iv

TO JULIA ‘CUMI’ BUNTING�

In loving memory of my grandmother in law. You encouraged me to complete my

Master’s degree and�for�me to�never give up. If it were not for your kindness,

understanding, and support I do not believe I would have gotten this far. I will always

cherish our conversations on life, education, family, and our deep respect and love for

one another’s beliefs.�

v

ACKNOWLEDGEMENTS

To my advisor Dr. Yi Zhou and committee members Dr. Rania Hodhod and Dr.

Shamim Khan, who have supported, advised me, and have become like a second

family. I cannot thank you enough for all of your support.

To my wife and daughter who are the backbone of my strength.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...v

LIST OF FIGURES ... viii

LIST OF TABLES ..xi

Chapter 1: Introduction

1.1 Brief history on Hadoop .. 3

1.2 Research Motivation .. 5

1.3 Our Contribution ... 6

1.4 Challenges ... 6

1.5 Thesis Organization ... 7

Chapter 2: Background

2.1 Hadoop System Architecture ... 9

2.1.1 HDFS .. 10

2.1.2 MapReduce ... 12

2.1.3 YARN ... 16

2.2 Machine Learning .. 18

Chapter 3: Related Work

3.1 Scheduling and allocating resources in the cloud and data centers 21

3.2 Efficient energy utilization in data centers ... 22

3.3 Different approaches of scheduling MapReduce jobs .. 24

Chapter 4: Benchmarks & Experimental Setup

4.1 HiBench ... 26

4.1.1 Micro Benchmark ... 26

4.1.2 Web Search Benchmarks ... 27

4.1.3 Machine Learning Benchmarks .. 28

4.2 Experimental Setup .. 28

4.2.1 Hardware and Prerequisites Installation .. 29

4.2.2 Multi-Node Hadoop Cluster Setup & Configuration 29

vii

Chapter 5: Research Methodology

5.1 Phase 1: Resource Utilization measurements .. 31

5.1.1 Terasort .. 32

5.1.2 Sort ... 34

5.1.3 Wordcount .. 36

5.1.4 Pagerank .. 38

5.1.5 Kmeans .. 41

5.2 Phase 2: Prediction Model Implementation .. 43

5.2.1 Collecting Training Data ... 44

5.2.2 Data Preprocessing and Model Training .. 52

Chapter 6: Results Analysis and Conclusion

6.1 Workload Profiling Analysis .. 55

6.1.1 Terasort Workload Profiles ... 55

6.1.2 Sort Workload Profiles .. 57

6.1.3 Wordcount Workload Profiles ... 58

6.1.4 Pagerank Workload Profiles ... 60

6.1.5 Kmeans Workload Profiles ... 62

6.1.6 Key Observations ... 63

6.2 Machine Learning Models Evaluation .. 63

6.3 Data Block Replications Impact ... 70

6.4 Energy-Aware Hadoop System Architecture .. 73

6.5 Conclusion .. 76

6.6 Future Work and Scalability ... 77

Bibliography .. 79

Appendix A .. 85

Appendix B .. 90

viii

LIST OF FIGURES

Figure 2.1.1: Hadoop’s Main Components�.. 9

Figure 2.1.1.1: HDFS Architecture .. 12

Figure 2.1.2.1: MapReduce Job Flow .. 16

Figure 2.1.3.1: YARN Architecture ... 18

Figure 5.1.1.1: Power Consumption vs Terasort Workloads on Hadoop Cluster 34

Figure 5.1.2.1: Power Consumption vs Sort Workloads on Hadoop Cluster 36

Figure 5.1.3.1: Power Consumption vs Wordcount Workloads on Hadoop Cluster 38

Figure 5.1.4.1: Power Consumption vs Pagerank Workloads on Hadoop Cluster 40

Figure 5.1.5.1: Power Consumption vs Kmeans Workloads on Hadoop Cluster 42

Figure 5.2.1.1: Workload Size Frequency in the Study .. 47

Figure 5.2.1.2: Processing 25 GB –�65 GB on 2 & 3-Nodes Hadoop Cluster 48

Figure 5.2.1.3: Processing 70 GB & 72.5 GB on 4 & 5-Nodes Hadoop Cluster 48

Figure 5.2.1.4: Processing 72.5 GB on 3, 4, 5, & 6-Nodes Hadoop Cluster 49

Figure 5.2.1.5: The workload data sizes distribution against the cluster resource categories 51

Figure 5.2.1.6: Descriptive Statistics of the Dataset .. 51

Figure 5.2.2.1: One-hot Data Encoded .. 53

ix

Figure 6.1.1.1: Resources required to Process 1 GB –�65 GB Terasort Workload 56

Figure 6.1.1.2: Resources required to Process 65 GB Terasort workload in our Experiment 56

Figure 6.1.1.3: Resources required to Process 75 GB & 80 GB Terasort Workload 57

Figure 6.1.2.1: Resources required to Process 40 GB –�72.5 GB Sort workload 58

Figure 6.1.3.1: Resources required to Process 20 GB –�30 GB Wordcount workload 59

Figure 6.1.3.2: Resources required to Process 25 GB –�37.5 GB Wordcount workload 59

Figure 6.1.4.1: Resources required to Process 1 GB & 2.5 GB Pagerank workload 60

Figure 6.1.4.2: Resources required to Process 5 GB & 10 GB Pagerank workload 61

Figure 6.1.4.3: Resources required to Process 25 GB & 35 GB Pagerank workload 61

Figure 6.1.5.1: Resources required to Process 1 GB –�22.5 GB Kmeans workload 62

Figure 6.2.1: Confusion Matrix of the Logistic Regression Model ... 64

Figure 6.2.2: Classification Report of the Logistic Regression Model... 65

Figure 6.2.3: Predicting the Testing Data in the Logistic Regression Model 65

Figure 6.2.4: Random Forest Classifier Accuracy Score with Different Estimators Value 66

.. 66

Figure 6.2.5: Effect of the Polynomial Kernel Function degrees on the SVM Classifier Acc. Score

Figure 6.2.6: SVM Classifier Accuracy Score against Different Kernel Function Types 67

Figure 6.2.7: Confusion Matrix of the Random Forest Classifier Model ... 68

x

Figure 6.2.8: Classification Report of the Random Forest Classifier Model 69

Figure 6.2.9: Predicting the Testing Data in the Random Forest Classifier Model 69

Figure 6.3.1: Sort Workload-Data Block Replications Impact on Power Consumption 72

Figure 6.3.2: Pagerank Workload-Data Block Replications Impact on Power Consumption 73

Figure 6.4.1: The Default Hadoop Cluster Framework before Integrating our Intelligent Module

.. 74

.. 75

Figure 6.4.2: Energy-Aware Hadoop Cluster Framework Equipped with our ML-based Module

Figure 6.4.3: Example of Decommissioning 3 DataNodes based on the ML-based Module 76

xi

LIST OF TABLES

Table 4.2.1: Cluster’s Nodes Hardware Specifications .. 29

Table 5.2.1.1: Hardware Resources Categories in Hadoop Cluster ... 44

Table 5.2.1.2: A Sample of the Training Dataset ... 49

2

Chapter 1. Introduction

Big�Data, we’ve all heard of it, living in a technology�driven world,�companies and

organizations are constantly producing and collecting massive amounts of data. At such

a rate, it is expected that by 2020 at least 35 zettabytes of data would be produced

(Lublinsky B., et al. 2013 p. 1). With the rapid growth of different business sectors in the

world, there becomes an increasing need for powerful data centers that are equipped

with platforms like Hadoop clusters, which are capable of processing and

communicating large scale of data. A study has been shown that data centers with a larger

amount of servers can consume the power of megawatts in data processing and

providing services in the Service Level Agreement (SLA), which in turn increases the

electricity bill costs and can negatively affect business profitability (Qureshi, Weber,

Balakrishnan, Guttag, & Maggs, 2009). Hadoop clusters with its open-source platform

have proven to be a successful, efficient, and reliable business solution for data

processing, i.e. Facebook & Twitter use Hadoop clusters in ML and data analytics

operations (“Top 10 Industries�using Big Data”, 2016).

When Apache Hadoop came to the front, it was like a breath of fresh air. There was finally

a solidified solution, which already proved to be successful in the commercial world.

Being an open source project made it ever more popular and accessible. With the

combination of Hadoop MapReduce, it allowed processing massive amounts of data

shared on scalable clusters�and�performing�convoluted data that wasn’t�possible to�

3

analyze or index in the past. Nevertheless, things even gets better with the consideration

of machine learning (ML) as a service in the Big Data scene, which will not only improve

the way data is being processed, but will also allow for quick business decisions by

understanding the patterns of the data itself. The ML algorithms that will be used in this

proposal are the most used in Big Data and are from the family of supervised learning

algorithms.

1.1 Brief history on Hadoop

Doug Cutting and Mike Cafarella started Hadoop in 2002, based off an Apache

Nutch project that they were working on. The Apache Nutch project was based on

building a search engine that can index billions of pages. During their research they found

that building this search engine would cost half a million dollars, as well as thirty

thousand dollars a month just in running costs, making this extremely expensive and not

feasible at that moment. Realizing there was no way they could continue their project

with the required costs, they began looking for a more cost-efficient solution in order to

reduce the issue of storing and processing large data sets. Cutting and Cafarella came

across a paper that Google released in 2003 on Google File System (GFS) which described

how to store large datasets, according to Ghemawat, Gobioff, and Leung (2003). Realizing

that this paper had half of what they needed to solve their issue, they carried on with

their research. In 2004, Google yet again released a paper which provided the solution for

what they were looking for in order to process large datasets, which is MapReduce (Dean

4

and Ghemawat, 2004). At this time, Google didn’t�actually�implement�GFS�and�

MapReduce techniques, Cutting and Cafarella decided to try it out using both techniques

GFS and MapReduce as an open source in their Apache Nutch project. With the project

being open source, it would be able to reach more people.

After implementing both techniques, they found that Nutch was limited in clusters and

needed a larger cluster to be able to run reliably, but unfortunately they were not able to

do this on their own and needed to find a company that would be interested in their

project�and�invest�in it. That’s when�Cutting joined Yahoo! in 2006. He wanted to�continue

with his project to be open source and wanted to implement a dependable and scalable

computing framework. Shortly after joining Yahoo!, he separated the distributed

computing parts from Nutch and combined GFS and MapReduce and created Hadoop.

Yahoo! released Hadoop in 2008 as an open source with Apache Software Foundation

(ASF), in which ASF tested successfully 4000 node cluster on Hadoop. Later in 2009, they

were able to successfully sort a PetaByte of data under 17 hours which managed billions

of searches and indexed millions of webpages using Hadoop. In the same year, Doug

Cutting left Yahoo! and was employed by Cloudera. This gave him the ability to spread

Hadoop to a larger array of industries, fulfilling his will of wanting to share Hadoop with

the world.

5

In 2011, ASF released Apache Hadoop version 1.0 while version 2.0.6 became available

with the inclusion of Apache Hadoop YARN in 2003, and the most recent version was

released in December 2017, that is version 3.0 (White, 2015, p. 32 & 33).

1.2 Research Motivation

In the real world, it is likely common that a data center with 1000-rack consumes

10MW of power annum (Manzanares, Qin, Ruan, & Yin, 2011), which poses a burden

on the budget in a way that can affect the overall business profitability. Therefore, there

is a need for an efficient approach that can address the power consumption in Hadoop

clusters since it is the most used framework in data centers, and this is what motivates

this study. There are three pivotal factors that motivate this study:

 The high demand of cost minimization of the overall data center’s operations

where Hadoop clusters are deployed.

 The need for a resilient framework that efficiently reduces the energy

consumption in the high workload Hadoop clusters.

 The significance of deploying a model that is able to predict the least necessary

resources, which maximizes the node utilization and minimizes energy

consumption.

6

1.3 Our Contribution

Unlike the traditional model-based data placement solutions, this research is

adopting ML algorithms as an intelligent solution for data placement in Hadoop clusters.

 The research introduces a novel approach to build an energy-aware MapReduce

framework that aims to reduce the energy consumption of data processing in data

centers, which in turn should reduce the total cost of operations in these data

centers.

 Furthermore, the reduction in the data processing cost exhibits a good business

opportunity for data centers on the cloud by allowing them to give better offers

for�the servers’ tenants, which can be appealing to more tenants and, accordingly,

increase the profitability of the data center.

1.4 Challenges

Processing multiple workloads in terms of the operation type and the data size

on Hadoop cluster is the preliminary phase in this thesis. Hadoop benchmarking comes

in the place and play the main role for providing the necessary functionalities to test the

performance of Hadoop cluster and/or studying the hardware resources needed for

processing different workloads on the cluster. In general, Hadoop benchmarks are

developed for more general test purposes and not for specific needs in terms of the size

and the type of data being processed on the cluster, which proposed some challenges

7

related to the benchmark configuration. For example, in this study, in order to execute

Wordcount MapReduce job for different workloads on Hadoop cluster, we had to

generate different data size by replicating a certain amount of data several times and

store the repeated data in a file for execution.

The Apache Software Foundation has released Hadoop in many releases such as

(2.6.5, 2.7.2, 2.7.7, 2.8.4 …etc.), each release has slight configuration differences and�

different stability than the other ones. Some Hadoop releases have low stability, while

some releases have better stability. This likely happens due to the bugs that potentially

come with the open source software releases. From our experience, Hadoop official

configuration does not really work as expected due to the different hardware resources

with different configurations, in addition to the different operating systems

configuration where Hadoop is installed. This posed a challenge for our study in terms

of choosing the right operating system and the right Hadoop release that will optimally

be configured for the available hardware resources in order to reach our study goals.

1.5 Thesis Organization

In Chapter 2 we talk about the Hadoop system architecture, its components and

the contribution of each component to the Hadoop system performance, then we will

demonstrate a brief definition for supervised and unsupervised ML algorithms. Related

research and studies are discussed in Chapter 3. The Hadoop benchmarking (HiBench)

is explained in Chapter 4, along with an illustration for the experimental hardware and

8

software setup. Chapter 5 discusses our research approach, in particular the data

collection and how it was used by the ML model, data preparation pipeline, and the

training of the ML model. Chapter 6 includes the experimental results, analysis of the

ML models’�performance, recommendation for the energy-aware Hadoop system

architecture, our research conclusion and future work, and system scalability.

9

Chapter 2. Background

2.1 Hadoop System Architecture

Hadoop is an open source framework that is used to manage, store and process massive

amounts of data running on large scalable clustered systems in a relatively short period

of time. Hadoop provides a reliable, scalable, and fault tolerant system. It also offers a

cost-effective way to store colossal amounts data without having to commit more

processing power, thus, having the ability to scale only when needed. Hadoop systems

is the heart of the Big Data ecosystem used in data mining, predictive analytics, and ML.

With the ability to handle unstructured, structured, and semi-structured data, Hadoop

can analyze, process, and distribute data. Accordingly, it becomes appealing to an array

of industries in the big data realm (Lublinsky et al., 2013, p. 4). There are 3 main

components of Hadoop as shown in Figure 2.1.1.

Figure 2.1.1: Hadoop’s Main Components

10

2.1.1 HDFS

HDFS is a foundational component to Hadoop and a foundation for other tools.

HDFS was designed to provide storage for exceptionally large files, i.e. petabytes and

above. Data is�written once but�read multiple�times, a process�known as�‘streaming data�

access�pattern’. HDFS�runs on commodity hardware (easily accessible and inexpensive)

making HDFS much more affordable and easier to use in comparison to other file

systems. HDFS splits files into blocks and sends them to numerous nodes across the

Hadoop cluster (Lublinsky et al., 2013, p.20&21), thus, HDFS is a block-structured file

system, see Figure 2.1.1.1. Master/Slave nodes (NameNode and DataNode) are what form

HDFS cluster:

 NameNode (Master Node) manages the file system namespace. Stores all

metadata of the filesystem across the cluster by which it is stored in the main

memory. Metadata is designed to be compressed. NameNode manages the file

system namespace and knows where all the DataNodes block files are located

(Lublinsky et al., 2013, p.20&21). The functions of HDFS NameNode executes file

system namespace operations, i.e., renaming, opening, and closing directories and

files. Maintains and manages the DataNodes as well as mapping blocks of a file to

DataNodes. NameNode maintains all locations of every block of a file, as well as

the replication factor of all the blocks. Receiving heartbeat and block report from

11

the DataNodes, thus, ensuring that the DataNode is alive. In the event that

DataNodes fail, a NameNode will select a new DataNode for new replicas.

 DataNode (Slave Node) are the workers (slave) of the filesystem, they store and

bring back any blocks when ordered to do so and report back to the NameNode

(Lublinsky et al., 2013, p.20&21). The functions of HDFS DataNode are to serve the

client write/read requests and receive instructions from the NameNode to perform

block creation, deletion, and replication, as well as submits block reports to

NameNode which contains the list of blocks. The health of HDFS is reported from

NameNode, as DataNode sends NameNode a heartbeat.

Blocks in HDFS architecture are files that are split into block-size pieces called

block, by default are the size of the block are 128 Mb, but the block size can be

configured based on requirements. As an example, consider a file size that is 612 Mb,

HDFS creates four blocks that, by default, will be of size 128 Mb and then one block will

be the size 100 Mb. On the other hand, a file size that is only 3 Mb will only use 3 Mb of

the disk space, thus allowing this small sized file to not occupy the full block size space

in the disk.

Blocks Replication Management in HDFS consists of storing replicas of a block

on numerous DataNodes that are based on a replication factor. The number of replicas

to be replicated for blocks of a file is called the replication factor in the HDFS

architecture. As an example, if the replication factor is 2, then two replicas of the block

12

will be stored on different DataNodes, thus allowing the block to be accessible from

another DataNode that contains the replica in the event if one of the data blocks fails.

Say that we want to store a file of 128 Mb and the replication factor is 2. Thus

(2*128=256) 256 Mb of disk space will be used for a file as two copies of the block will be

stored (“Hadoop HDFS Architecture Explanation and Assumptions” 2020).

Figure 2.1.1.1: HDFS Architecture

2.1.2. MapReduce

Google invented MapReduce in 2004, which was suitable for parallel data

processing in a distributed computing environment. MapReduce was designed to run on

commodity hardware in order to solve large data computational issues and problems.

MapReduce is a framework in which data splitting, data distribution in the cluster, data

parallel processing, execution synchronization, and fault tolerance is automatically

13

managed (Agarwal and Khanam, 2015). MapReduce framework is typically composed of

two tasks: Map Task & Reduce Task.

 Map Task (Mapper): Takes the input data in the form of key value pairs and then

generates the output in the form of key value pairs (Agarwal and Khanam, 2015).

Below are the various phases of the Map Task.

RecordReader: Converts the input split into records, the data is then parsed into

records, but does not parse itself. The data is given to the mapper function in key

value pairs.

Map: A user defined function that processes from the RecordReader the key value

pair, producing multiple or zero intermediate key value pairs. The key value pair

is determined by the mapper function. Usually the key is the data that the reducer

function performs the grouping operation. The value is the combined data that

gets the final result in the reducer function.

Combiner: An optional function used as a localized reducer that groups the data in

in the Map phase. In many scenarios, aggregating the intermediated data from the

mapper decreases the amount of data that is needed to move over the network and

provides ultimate performance gain without any disadvantages. However, the

combiner is not always guaranteed to execute.

Partitioner: Takes from the Mapper the intermediate key value pairs, then splits

them into shards, allowing one shard per reducer. The Partitioner by default

14

retrieves the hash code of the key, and evenly distributes the keys on the reducers

by performing modulo operations by the number of reducers

(key.hashcode()%number of reducers). This provides that the key with the same

value from different mappers will ultimately end at the same reducer. From each

map task the partitioned data is written onto the local file system, awaiting there

for the reducer to pull it (“Hadoop Architecture in Detail –�HDFS, Yarn, &

MapReduce” 2019).

 Reduce Task (Reducer): Takes the input of key and list of value pairs then

generates the output as key value pairs. The output in this phase is the final output

(Agarwal and Khanam, 2015). Below are various phases of the Reduce Task.

Shuffle & Sort: The first step for the reducer is shuffle and sort, which downloads

to the machine where the reducer is running the data written by the Partitioner.

This step then sorts pieces of the individual data to a large data list, collecting the

equivalent keys, by doing so, allowing the framework to make it easier to iterate

in the reduce task. Although this phase is not customizable, the framework

automatically handles everything while ensuring that the developer has complete

control on how the keys are grouped and sorted through a comparator object.

Reducer: Performs the reduce function once per key grouping. The framework

hands the iterator object and function key that contains all values belonging to the

key. The Reducer can be written to filter and combine data in multiple ways. When

15

the reduce function finishes it gives an OutputFormat of either zero or more key

value pairs. The Reduce function, similar to the Map function, is different from job

to job.

OutoutFormat: The final phase in the reduce task includes taking the key value pair

from the Reducer and writing it in a file by the recordwriter. Separating the key

and value by default are separated by tab with each record by a newline character.

The final data will be written to HDFS (“Hadoop Architecture�in Detail –�HDFS,

Yarn, & MapReduce” 2019).

A job in the MapReduce model is an application that is to be executed. An example

of the MapReduce model is shown in Figure 2.1.2.1. The mapper and reducer jointly

create a Hadoop job. It’s�worth mentioning that the mapper�is�a compulsory�part�of the�

job and the reducer is noncompulsory, the user is still responsible for implementing the

logic that will give the desired output for his own task (Lee, Hsieh, Hsieh, & Hsiao, 2014).

In MapReduce, there are two daemons to process executing jobs: JobTracker and

TaskTracker.

 JobTracker is in charge of all the jobs scheduling and task dispersion.

 TaskTracker is the worker and must execute all tasks given and return the results

to the JobTracker (Lee, Hsieh, Hsieh, & Hsiao, 2014).

16

JobTracker and TaskTracker communicate with one another using a heartbeat message

in which these heartbeats tell the JobTracker that the TaskTracker is still alive and the

TaskTracker is able to signify what time it would be ready to run a new task (Lublinsky

et al., 2013, p. 68).

Figure 2.1.2.1: MapReduce Job Flow

2.1.3. YARN

YARN stands for, Yet Another Resource Negotiator, was introduced in Apache

Hadoop 2 in 2013 as a new cluster resource management system. Although designed to

improve MapReduce implementation, it is also capable to sustain other distributed

computing paradigms (White, 2015, p.97). It is important note that YARN does not totally

replace MapReduce but can be used alongside it. By introducing YARN, it took away the

complete reliance on MapReduce and opened the door for Hadoop to run applications

on other engines such as Apache Spark, Apache Kafka, Apache Flink as well as Apache

Storm.

17

YARN separates the job scheduling and resource managements into two separate

daemons, basically separating the functionality�of MapReduce’s�JobTracker. There are�

two long-running daemons, one called the Resource Manager (RM), which comprises of

an Application Manager and Scheduler and manages the resources across the cluster, and

the second one called the Application Master (AM), which caters to the support of specific

applications. What the AM does once it runs depends completely on the application itself,

whereas the application could be either a single job which is common in jobs done in

MapReduce or multiple jobs as a Directed Acyclic Graph (DAG). It is important to note

that YARN does�not�alter�the MapReduce programming model or�its�API’s�but�makes�a�

way for a different resource model in carrying out MapReduce jobs. Most MapReduce

applications will work as they are, but most likely need to be recompiled.

The architecture of YARN in Figure 2.1.3.1 shows the client program submitting

an application with all the specifications needed for the AM, thus all the information

needed must be provided to the RM so the RM then finds a node manager in order to

launch the initial container. What the AM does once it runs depends completely on the

application itself; within the container it is running it could run a computation itself, and

return the results to the client, or it could send a request to the RM for more containers,

so that it can run a distributed computation. A container may use a UNIX process

(Lublinsky et al., 2013, p.450-451).

18

Figure 2.1.3.1: YARN Architecture

Although there are three main components in Hadoop as shown in Figure 2.1.1, there are

more core components to Hadoops ecosystem which is ever growing. Other components

are HBase, ZooKeeper, Oozie, Pig, and Hive, just to mention a few. Hadoop has the ability

to store large amounts of data, is flexible, cost effective, has high computational power,

and linear scaling. Hadoop has become the superpower in the Big Data Industry.

2.2. Machine Learning (ML)

ML is a subarea of Artificial Intelligence, which focuses on algorithms that are

designed to give computer systems and software applications the ability to learn

automatically and improve without being programmed to do so. The main objective of

19

ML is to make it available for computers to learn without the need of assistance from

humans. With that said, the learning process often consists of data or observations, in

which ML looks for patterns in the data or the information that has been observed in

order to make better decisions or more accurate decisions.

ML algorithms are generally categorized as supervised and unsupervised learning

classification, but in Big Data, Supervised Learning are typically the go-to algorithms

used. However, unsupervised learning is also used. Below I will explain what supervised

learning and unsupervised learning are and the algorithms commonly used in Big Data.

Supervised Learning is when you train or teach the machine using a learning

algorithm from training datasets. The algorithm makes predictions from the datasets

given and�is�corrected, once the learning stops, that’s�when�the algorithm�has�reached an�

optimal level of performance (Brownlee, 2016).

 Logistic Regression: A categorical algorithm which is used to appoint observations

in a distinct batch of classes. The achievement depends much on the size of

training data (“Logic Regression”, 2017).�

 Multiple Linear Regression: A regression algorithm which attempts to observe more

than one independent variables and one dependent variable by finding an optimal

fitted linear equation�that describes�the observed data (“Multiple Linear�

Regression”, 1997-1998).

20

 Naïve Bayes: Based on Bayes Theorem and is a compilation of probabilistic

classification algorithms. It is scalable, does not require large training datasets

(Soni, 2018).

 Random Forest: A collection of decision trees. Works well with large datasets but

should use caution when creating too deep of a tree as it could cause overfitting

(Donges, 2019).

 K-Nearest Neighbor (KNN): Used for both regression and classification predictive

issues. It can be computationally challenging in both test and training phases, as

they correlate all training samples when classifying all test samples (Apruzzese,

Colajanni, Ferretti, Guido, & Marchetti, 2018).

 Support Vector Machines (SVM): Non-probabilistic classifier, defined as a separating

hyperplane. This particular algorithm is not very scalable and is best used as a

binary classifier (Patel, 2017).

Unsupervised Learning: Data is not labeled or classified; thus, its main goal is to

infer a function from unlabeled data in order to describe a hidden structure (Dua S. and

Du, X. 2011, pp. 31).

 Clustering: Divides and then regroups data points into groups that are related and

more similar. Although there are hundreds of clustering algorithms, two of the

most commonly used clustering algorithms are K-Mean clustering and

Hierarchical clustering (Kaushik, 2016).

21

Chapter 3. Related Work

Many studies have been conducted to improve Hadoop clusters’ energy�efficiency;

numerous algorithms and platforms have been developed in order to minimize the

amount of power consumed in data centers. In this thesis, I will address related work of

the energy consumption techniques from three conceptual points of views: scheduling

and allocating resources in the cloud and data centers, efficient energy utilization in data

centers, and different approaches of scheduling MapReduce jobs.

3.1 Scheduling and allocating resources in the cloud and data centers

Estimating the resources needed for computations in data centers and the cloud

can be an effective method for cost reduction, probabilistic models have been built for

task scheduling in cloud computing by using Erlang stochastic (Hacker, Mahadik 2011).

The study shows that modeling the probability of resources needed, and task waiting

queue based on different workloads can help in estimating the clusters’ size and the

amount of spare resources needed, which would possibly control the cost of needed

resources and therefore effectively reduce the cost of energy consumed in data centers.

According to Tian and Chen (2011), by modeling MapReduce processing

components, data centers’ resource provisioning can be optimized, and�therefore jobs�

processing cost can be minimized. Tian and Chen have proposed a function that helps to

reduce the jobs’ financial�cost, the function�models�the relationship between input�data,

22

resources needed, i.e. slots for Map and Reduce tasks and the job complexity, where the

function parameters can be utilized based on the requested job.

Palanisamy, Singh, and Liu (2015) have presented a MapReduce model for data

processing in the cloud. Their model automates cluster configuration in the cloud based

on the job deadline and the MapReduce profile of the reuqested job, which can globaly

optimize the resource utilization in the cloud. According to Palanisamy et al. (2015), the

model significantly reduces data center resources cost by 80% for processing workloads

such as Facebook workloads.

A Microsoft research has been conducted by (Jalaparti, Ballani, Costa, Karagiannis,

& Rowstron 2012) on making the data center service providers more efficient in the cloud.

Based on the customer’s MapReduce job complexity and the customer’s cost constraints,

the system’s�model predicts�multiple tuples�of�resources�as�computetional resources and

network�bandwidths. Then, the resource tuple choice is�made according to�the customer’s�

job desired completion time, the existance of resources that yields the cheapest cost for

the cloud service provider, and the ensurance of resource avaliability for future

customers.

3.2 Efficient energy utilization in data centers

Kaushik, Bhandarkar, and Nahrstedt (2010) have simulated an approach of

classifying�Yahoo’s Hadoop cluster�servers�into�two�categories, hot�and�cold categories.

23

Hot category�classifies�the servers�that currently�have�data that’s�being�accessed,�and�cold

category classifies servers that are in a sleeping mode. This classification is based on data

processing classification in terms of performance requirements, cost, SLA, and power

characterstics, which in turn affects the data placment in HDFS in the cluster. The

researchers’ simulation show that their�approach can reduce the power�consumption in

Yahoo Hadoop cluster by 24% annually.

Goiri et. al. (2012) have proposed a novel Hadoop framework (GreenHadoop) that

aimed to reduce the On-Grid energy consumption in data centers by relying more on the

solar power as an alternative renewable energy. Their proposed framework schedules

MapReduce jobs in a way that allows the maximum amount of solar energy to be used to

complete the jobs within its deadline constraint, and if the On-Grid power has to be used

in order�to�meet�the jobs’ deadline constrain,�then�the�framwork�schedules�these jobs�in�

the time where the On-Grid energy consumption is the cheapest.

Wirtz and Ge (2011) have conducted an experiment on Hadoop MapReduce tasks

to improve energy efficiency in data centers. Their energy reduction approach is based

on two techniques: changing the amount of concurrently working nodes, and adusting

the scaling of the�CPU’s�frequency�and voltage, where both techniques�are based on�the�

MapReduce jobs computational characteristic.

In another study on reducing the energy consumption in Hadoop clusters, Lang

and Patel (2010) have performed an experimental comparison between two exterme

24

approaches on different MapReduce workloads. The first approach is based on powering

up a few number of nodes when the cluster is underutilization, the second approach is

based on using all�clusters’ nodes for processing a MapReduce workload and then

shutting down every single node in the cluster. The second exterme approach has been

proven to be more effective in improving the energy efficiency in Hadoop cluster

according to (Lang & Patel, 2010).

3.3 Different approaches of scheduling MapReduce jobs

Sandholm and Lai (2009) have presented a resource allocation system that

improves the scheduling process of MapReduce jobs. The system achieves its goal in three

ways: the user-assigned and regulated priorities for different service levels to jobs,

allocating cluster’s resources�is�adujsted dynamically to�satisfy job phases, automatic�

detection and elimination of the bottlenecks during the job processing life time.

Wang, Shen, Yu, Nie, and Kou (2013) have proposed a scheduling technique that

improves system throughput in job-intensive environments. Their schedular algorithm

analyzes the MapReduce job requirements, and satisfies four main factors that can

improve system throughput, the factors are: data processing locality should be

maintained at its highest ratio, choosing the nonlocal processing that keeps the system

throughput high, keeping stored data on the cluster nodes as balanced as possible to

avoid poor network performance, and making use of all the cluster computing resources

25

by lessening the amount of idle nodes. This schedular algorithm improves system

throughput on the expenses of the energy consumption.

Verma, Cherkasova, and Campbell (2011) have proposed a non traditional

MapReduce framework for controlling the cluster resource allocation towards achieving

applications performance objectives. In their approach, firstly, they profile the

MapReduce job based on its performance characteristics during the map and reduce

phases. Secondly, they built a model that is able to estimate the necessary cluster

resources needed to complete the MapReduce job based on the job profile and a given job

deadline for completion. Finally, they implement a job schedular in Hadoop that orders

the MapReduce jobs and determines the amount of needed resources, to ensure meeting

jobs completion time requirement.

Kurazumi, Tsumura, Saito, and Matsuo (2012) study weren’t�concerned about the

energy efficiency in Hadoop cluster, but they focused on improving�the node’s�CPU�

efficiency for the I/O bounded jobs, instead. Their approach of improving the CPU

performance is to dynamically detect the I/O waiting times during the MapReduce jobs

execution and schedule more tasks to the CPU processing slots during these times to

shorten jobs execution time.

26

Chapter 4. Benchmarks & Experimental Setup

4.1 HiBench

HiBench is considered a big data benchmark suite for the Hadoop framework and

is the most commonly used application in MapReduce jobs. The benchmarks used

comprehensively classify big data Hadoop framework in terms of system resource

utilization, throughput, and speed. The benchmarks used in this research for

unstructured data include Micro benchmarks, i.e., WordCount, Sort, and TeraSort. For

semi-structured data included Web Search benchmark, i.e., PageRank. For Machine

Learning benchmarks I used K-Means (Huang S., Huang J., Yan, Lan, Jinquan, 2010).

4.1.1 Micro Benchmark

 WordCount is a CPU bound process. WordCount benchmark reads the input text

file that calculates how many times each word occurs. Using the

RandomTextWriter program found in Hadoop, the input data is created by

executing the script for the workload. This job takes away a small amount of

information from data of a larger source (Huang S., Huang J., Yan, Lan, Jinquan,

2010).

 Sort is an I/O bound process. Sort benchmark as its name suggests sorts, sorting

the input text file by key. Using the RandomTextWriter program found in Hadoop,

27

the input data is created by executing the script for the workload. This program

uses map or reduce to run the job where the tasks write large series of unsorted

words without interaction between the tasks. Based on key, the output of the key

value pairs in map phase get sorted and shuffled and then is reduced again based

on key. During the shuffle and merge stages of the MapReduce model the data is

automatically sorted (Huang S., Huang J., Yan, Lan, Jinquan, 2010).

 TeraSort is both a CPU bound process (during map phase) and I/O bound process

(during reduce phase). Similarly, like Sort benchmark it sorts by key the input text

file, however, TeraSort has the ability to sort and distribute equal loads to all nodes

during the process and uses either map or reduce to sort the final order of samples

input data. Using the TeraGen program found in Hadoop, which uses either map

or reduce to create data, the input data is created by executing the script for the

workload, and by default has the ability to produce billions of byte records (Huang

S., Huang J., Yan, Lan, Jinquan, 2010).

4.1.2 Web Search Benchmarks

PageRank is a CPU bound process. It measures the quality and importance of a

website as well as calculates the number of these websites and links. The

implementation of the PageRank algorithm is used in MapReduce for large scale search

indexing. The workload comprises of multiple Hadoop MapReduce jobs, and are

28

iterated until conditions of coverage are satisfied (Huang S., Huang J., Yan, Lan,

Jinquan, 2010).

4.1.3 Machine Learning Benchmarks

K-Means Clustering is both CPU bound (during iteration) and I/O bound (during

clustering) process. K-means is a widely used clustering algorithm in machine learning.

This clustering algorithm can be used in Hadoop by executing the Hadoop job

iteratively until the desired number of iterations have met the specified limit, then

allowing the clustering job to run and assigns each sample to a cluster. Each sample is

defined as a numerical d-dimensional vector. The workload input is created based on a

statistic distribution using a random data generator. (Huang S., Huang J., Yan, Lan,

Jinquan, 2010).

4.2 Experimental Setup

One of the most Hadoop’s traction features is its�capability to run on commodity�

hardware, particularly when processing batch jobs overnight for reports or actionable

information production. Unlike batch jobs production environment, processing real-

time jobs on Hadoop cluster require very high hardware specifications such as large

memory size i.e. 512 GB. In this study our goal is developing energy-aware Hadoop

cluster framework for processing batch jobs, therefore, we conducted the experiment on

commodity hardware.

29

4.2.1 Hardware and Prerequisites Installation

We setup 7-nodes Hadoop cluster (1 NameNode and 6 DataNodes), Table 4.2.1

below depicts the hardware specifications of the cluster’s nodes.�

Table 4.2.1: Cluster’s Nodes Hardware Specifications�

Node Specifications

NameNode 2.4GHz CPU (4 cores), 8 GB Memory, 228 GB HDD

DataNode 1 2.4GHz CPU (4 cores), 4 GB Memory, 228 GB HDD

DataNode 2 2.4GHz CPU (4 cores), 8 GB Memory, 228 GB HDD

DataNode 3 2.4GHz CPU (4 cores), 8 GB Memory, 228 GB HDD

DataNode 4 2.5GHz CPU (4 cores), 8 GB Memory, 457 GB HDD

DataNode 5 2.3GHz CPU (4 cores), 16 GB Memory, 468 GB HDD

DataNode 6 2.3GHz CPU (4 cores), 16 GB Memory, 468 GB HDD

Each node is equipped with Ubuntu 16.04 Operating System. We connected the nodes

to power meters to enable measuring the power consumption in KWh for every

workload processed. We started Hadoop cluster environment setup by installing and

configuring all the prerequisites software tools and packages on each node, such as Java

OpenJDK 1.8.0_252, psutil 5.7.0 (Cross-platform lib for process and system monitoring

in Python)….etc.�

4.2.2 Multi-Node Hadoop Cluster Setup & Configuration

After the prerequisites, we setup multi-node Hadoop cluster 7-nodes by

installing Apache Hadoop 2.7.2 distribution on each node. We configured 1 node as a

30

master (NameNode) node which is responsible of managing the file system namespace

and regulates clients file access. We configured 6 nodes as DataNodes (slaves) which

are responsible of storing actual business data in blocks, managing these data blocks

based on the NameNode demand, and respond to the read/write requests from the

client’s file system.�

There are four XML files which include the main Hadoop cluster configuration,

these files are:

 core-site.xml: Contains configuration for the core Hadoop functionalities that are

essential to MapReduce and HDFS such as I/O settings.

 hdfs-site.xml: Contains configuration for the NameNode, secondary NameNode,

DataNodes, and the HDFS daemons settings.

 mapred-site.xml: Contains configuration settings for MapReduce daemons such

as Map tasks and Reduce tasks (note that job tracker and task tracker are

deprecated properties in Hadoop v2.7.2).

 yarn-site.xml: Contains configuration settings for NodeManagers and

ResourceManagers.

We have configured Hadoop cluster with a high efficient and maximum resource

utilization goal in mind. The details of the configuration settings for the above four files

are presented in Appendix A.

31

Chapter 5. Research Methodology

This study aims to profile MapReduce tasks with the use of ML algorithms to

effectively place the data in an energy-aware Hadoop clusters; activate only sufficient

number of nodes to accomplish the data processing efficiency by utilizing the minimum

necessary nodes, with maximum utilization, and least energy consumption to reduce the

overall cost of operations in data centers that deploy the Hadoop clusters. We have used

HiBench benchmark for profiling MapReduce workloads. The benchmarks are micro

benchmarks (Terasort, Sort, Wordcount), web search benchmark (Pagerank), and the

machine learning benchmark (K-means clustering algorithm). Our research objective was

inferenced through the below two phases:

5.1 Phase 1: Resource Utilization measurements

The procedure started by installing Hadoop cluster (7-nodes): one master

(NameNode) node and 6 slave (DataNode) nodes. The HiBench benchmarks were

configured to generate the desired workload data size that corresponds to each test. In

order to measure the power consumption with each workload processed on the cluster,

we used dedicated power meters which were always connected to the master and slave

nodes.

To study the minimum necessary hardware resources needed for processing

MapReduce workloads with the lowest possible power consumption, we characterized

32

different MapReduce workloads. The strategy that we followed was observing the energy

consumption at different workloads and�different�number�of cluster’s nodes. Besides,

observing the power consumption of the cluster’s nodes we also�observed the nodes

hardware resources utilization such as CPU utilization, memory utilization, and storage

utilization. Our experiment was carried out on two types of operations; I/O bound

(Terasort, Sort) in which the major job’s�time to complete is spent on waiting for I/O

operation to be completed, and CPU bound (Wordcount, Pagerank, Kmean) in which the

major�job’s�time�to�complete is�spent on waiting for�operations�using the CPU to�be

completed.

5.1.1 Terasort

The limitation of the I/O bound jobs such as Terasort is the cluster’s storage

capacity. Due to the DataNodes storage capacity, in our experiment we could only

process up to 65 GB data size on the 2-nodes Hadoop cluster which is NameNode

equipped with 228 GB Hard Disk Drive (HDD) and one DataNode that was equipped

with 228 GB (HDD). Figure 5.1.1.1 shows the power consumption of processing

different Terasort workloads at different number of Hadoop cluster’s nodes.�Using the

HiBench Terasort benchmark configuration we generated different workloads by

changing the data size parameter in the Terasort benchmark configuration file i.e. data

size parameter = 100000000 for generating 10 GB data size, 1000000000 for generating

33

100 GB data size ...etc. then we processed the generated workloads on different

numbers of Hadoop cluster’s nodes.

(a) (c)

(d) (b)

34

(e) (f)

Figure 5.1.1.1: Power Consumption vs Terasort Workloads on Hadoop Cluster

For example, the power consumption of processing Terasort workloads on 5

nodes Hadoop cluster is shown in Figure 5.1.1.1 (d) , the vertical axis represents the

cluster’s total power consumption in KWh for executing different Terasort�MapReduce

workloads at (65.0, 67.5, 70.0, 75,.0, 80.0) Giga bytes, which are represented on the

horizontal axis.

The complete experimental results for all the Terasort workloads and the cluster’s

resource utilization is shown in Appendix B.

5.1.2 Sort

In Hadoop cluster, Sort is an I/O bound job, so as mentioned before the limitation

in this type of jobs is the cluster’s storage capacity. In our experiment we could not

35

process more than 65 GB data size on 2-node Hadoop cluster due to the storage capacity

limitation, where processing 67.5 GB on the 2-nodes cluster has failed to complete.

Similarly, 3-nodes (one NameNode and two DataNodes) Hadoop cluster could process

only up to 72.5 GB sort workloads, the 75 GB sort workload has failed to complete on 3-

nodes Hadoop cluster. Figure 5.1.2.1 shows the power consumption of processing

different Sort workloads�at�different�number�of Hadoop cluster’s nodes. Using the�

HiBench Sort benchmark configuration we generated different dataset size in a similar

manner as what we did in the Terasort benchmark, then we processed it on different

numbers of Hadoop cluster’s nodes.

(a) (b)

36

(c) (d)

Figure 5.1.2.1: Power Consumption vs Sort Workloads on Hadoop Cluster

The complete experimental results for all the Sort workloads and the cluster’s resource

utilization is shown in Appendix B.

5.1.3 Wordcount

Unlike I/O bound jobs, CPU bound jobs such as Wordcount MapReduce job, the

limitations is the CPU utilization. During the experiment we have not experienced

having average CPU utilization over 90%, however we have observed an average CPU

utilization of 88.60% while processing 35 GB Wordcount workload on 3-nodes (one

NameNode and 2 DataNodes) Hadoop cluster, during a 1 hour and 5 minutes period of

time. Figure 5.1.3.1 shows the power consumption of processing different Wordcount

workloads at different number of Hadoop cluster’s nodes.

37

(a) (c)

(b) (d)

38

(e) (f)

Figure 5.1.3.1: Power Consumption vs Wordcount Workloads on Hadoop Cluster

Due to some implementation and configuration limitations of the HiBench

Wordcount benchmark version that we used, we had implemented a Python script that

repeats a 5.5 MB text data to generate different data size, then we submitted the

generated workloads to the Hadoop cluster to apply Wordcount benchmark on it at

different number of the cluster’s nodes.�

The complete experimental results for all the Wordcount workloads and the cluster’s

resource utilization is shown in Appendix B.

5.1.4 Pagerank

Pagerank is a web search benchmark where its operations are CPU bound. This

type of operations spend the majority of its execution time waiting for the CPU

39

resource, which results in a high average CPU utilization. In our experiment with

pagerank workloads, the highest record of the average CPU utilization was 75.98%

while processing a 5 GB (5000000 pages) workload on a 3-nodes (one NameNode and

two DataNodes) Hadoop cluster, during a 29 minutes period of time, as shown in the

fully detailed results’ tables�in Appendix B. Figure 5.1.4.1 shows the power

consumption of processing different Pagerank workloads at different number of

Hadoop cluster’s nodes.�

(a) (b)

40

(c) (e)

(d) (f)

Figure 5.1.4.1: Power Consumption vs Pagerank Workloads on Hadoop Cluster

Using the HiBench Pagerank benchmark configuration we generated different

workload size by using different number of pages i.e. 35000000 pages for generating a

41

35 GB workload, 50000000 pages for generating a 50 GB workload….etc. while we

processed the generated workloads on different numbers of Hadoop cluster’s nodes.�

The complete experimental results for all the Pagerank workloads and the cluster’s

resource utilization is shown in Appendix B.

5.1.5 Kmeans

Kmeans, a machine learning benchmark which is another CPU bound

benchmark. In this experiment we observed an average CPU utilization of 91.19%,

while processing a 17.5 GB workload (16 clusters, number of samples 30000000, and

6000000 samples per input file) on 3-nodes (one NameNode and two dataNodes)

Hadoop cluster, during a 1 hour and 38 minutes period of time. Figure 5.1.5.1 shows the

power consumption of processing different Kmeans workloads on Hadoop cluster.

(a) (b)

42

(c) (e)

(d) (f)

Figure 5.1.5.1: Power Consumption vs Kmeans Workloads on Hadoop Cluster

Using the HiBench Kmeans benchmark configuration we generated different

workload size by changing the number of clusters at a fixed number of samples of

30000000 and a fixed number of samples per input file of 6000000. For example to

43

generate a 20 GB workload we set number of clusters to 18, number of samples

30000000, and the number of samples per input file to 6000000, and so on and so forth

for each workload, we just change the number of clusters. Then we processed the

generated workloads on different numbers of Hadoop cluster’s nodes.

The complete experimental results for all the Kmeans workloads and the cluster’s

resource utilization are shown in Appendix B.

Note that in our study the workload processing time was not a concern, as we

assumed batch job processing where the execution time is not a significant factor. Our

main goal of observation was finding out the minimum power consumption for

processing a certain workload (data size) on a certain number of nodes with achieving

maximum resource utilization, regardless the execution time that is taken.

5.2 Phase 2: Prediction Model Implementation

The collected data from phase 1 was used to train three supervised ML models

which are; logistic regression, random forest classifier with 100 estimators, and Support

Vector Machine (SVM) classifier with a kernel of 5th order polynomial function, wherein

we compared the models according to each their prediction accuracy scores. As we

mentioned before that our study goal is to find out the number of nodes that consume

the minimum amount of power to execute a certain workload in Hadoop cluster. The

collected data which is used to train the ML models is defined with two features; the

44

workload type�i.e. Wordcount, Sort…etc., the workload size i.e. 65 GB, 70 GB…etc., and�

one label which is the hardware resources needed for consuming the minimum amount

of power to process the workload i.e. as a result of our experiment, the ML model would

predict cluster resources of (4 x 2.4GHz CPUs (16 cores) + 1 x 2.5GHz CPU (4 cores)), 36

GB of memory, and storage space of 1369 GB for processing a 80 GB Terasort workload.

More on ML model and the experiment result analysis will be discussed in chapter 6.

5.2.1 Collecting Training Data

We categorized the hardware resources in our Hadoop cluster into 6 categories

as shown in Table 5.2.1.1:

Table 5.2.1.1: Hardware Resources Categories in Hadoop Cluster

Resources

Category

CPU (GHz) Memory

(GB)

Storage

(GB)

1 2 x 2.4 CPUs (8 cores) 16 456

2 3 x 2.4 CPUs (12 cores) 20 684

3 4 x 2.4 CPUs (16 cores) 28 912

4 4 x 2.4 CPUs (16 cores) + 1 x 2.5 CPU (4 cores) 36 1369

5 4 x 2.4 CPUs (16 cores) + 1 x 2.5 CPU (4 cores) +

2.3 CPU (4 cores)

52 1837

6 4 x 2.4 CPUs (16 cores) + 1 x 2.5 CPU (4 cores) +

2 x 2.3 CPUs (8 cores)

68 2305

Based on our experimental results from phase 1 and our study goal, we collected

5 datasets, each dataset represents the experimental results of one of the five

benchmarks Terasort, Sort, Wordcount, Pagerank and Kmeans. The 5 datasets include

45

124 data record, each data record has two features (Operation type, Data size) and a

label (Resource category).

Unlike the traditional Hadoop cluster benchmarking studies, our experiment

approach is to process different workloads (within different data size ranges) on

different number of Hadoop cluster nodes (2-nodes to 7-nodes), measure the power

consumption accompanied with each workload execution. Based on power

consumption observations we were able to figure out an optimal number of Hadoop

cluster nodes which consume the minimum amount of power to complete a certain

workload job execution.

Considering the aforementioned, we did not have to process and observe the

same workloads within a certain data size range on each of the Hadoop cluster’s nodes

category (Table 5.2.1.1 shows the Hadoop cluster nodes categories). Hence, once we

observe that the power consumption for processing workloads in a certain data size

range on a certain cluster’s nodes�category, starts to show increase in power

consumption, than the power consumption of processing the same workloads or a few

of it within the same data size range on a lower cluster’s�nodes category. Then we infer

that we do not have to observe processing any workload within this data size range on

a higher cluster’s nodes category, because the result would be more increase of the

power consumption for any workload within this data size range, which is unnecessary

for our experimental objectives. Therefore, we can notice in Figure 5.2.1.1 that the

46

workload experimental frequency is not uniformly distributed on the workload sizes in

our study, regardless of the operation type.

Let’s take the Sort workloads as an example to explain our experiment approach,

when we look at Appendix B the Sort Workload Characterization section, we can notice

that the power consumption for processing workloads in the data size range from 25 GB

to 65 GB on 2-nodes (1 NameNode and 1 DataNode) Hadoop cluster is lower than

processing the same workloads on 3-nodes cluster. The power consumption result of

processing the workloads on 2-nodes cluster was then suffices to infer that there is no

need for us to process the entire workloads range from 25 GB to 65 GB on 4-nodes

cluster, since the power consumption would increase, as we can see the power

consumption of processing 40 GB and 65 GB workloads on the 4-nodes cluster.

Furthermore, we can infer that the workloads within data size range below 25 GB will

consume lower power when it is processed on 2-nodes cluster. Figure 5.2.1.2 depicts the

difference in power consumption of processing workloads in the data size range from

25 GB to 65 GB on 2-nodes and 3-nodes Hadoop cluster as we explained before. The

same approach applied on workloads from 67.5 GB to 72.5 GB. For example, the power

consumption of processing 70 GB on 5-nodes cluster is lower than the power

consumption of processing 70 GB on 4-nodes cluster, and is lower than the power

consumption of processing 72.5 GB on 3-nodes cluster, the same for the workload 72.5

GB, therefore, we infer that an energy-aware Hadoop framework would process the

47

workloads from 67.5 to 72.5 GB on 5-nodes Hadoop cluster, and no need of processing

the workloads 67.5 GB and 70 GB on 3-nodes cluster, and as we mentioned before that

2-nodes Hadoop cluster failed to process any workload that is above 65 GB due to the

storage capacity limitations. Figure 5.2.1.3 shows the power consumption comparisons

of processing both workloads 70 GB and 72.5 GB on 4-nodes and 5-nodes Hadoop

cluster. In addition, the power consumption of processing workload of 72.5 GB on 6-

nodes cluster was much higher than processing the same workload on 3, 4, 5, and 6-

nodes cluster, hence, it was unnecessary to experiment processing other workloads on

the 6-nodes and 7-nodes cluster. Figure 5.2.1.4 shows the power consumption of

processing a 72.5 GB workload on 3, 4, 5, and 6-nodes cluster.

Figure 5.2.1.1: Workload Size Frequency in the Study

48

Figure 5.2.1.2: Processing 25 GB –�65 GB on 2 & 3-Nodes Hadoop Cluster

Figure 5.2.1.3: Processing 70 GB & 72.5 GB on 4 & 5-Nodes Hadoop Cluster

49

Figure 5.2.1.4: Processing 72.5 GB on 3, 4, 5, & 6-Nodes Hadoop Cluster

The same experimental approach was applied on the other four benchmarks

(Terasort, Wordcount, Pagerank, and Kmeans) in order to collect the dataset which was

used later to train the ML model. A sample of the collected dataset during the

experiment is shown in Table 5.2.1.2 below:

Table 5.2.1.2: A Sample of the Training Dataset

Workload

Type

Data Size

(GB)

Resource

Category

Kmeans 0.75 1

Terasort 0.5 1

Terasort 67.5 4

Terasort 57.5 1

Terasort 60 1

Pagerank 35 4

Terasort 55 1

Pagerank 2.5 4

50

Sort 1 1

Terasort 85 4

Sort 72.5 4

wordcount 12.5 1

Sort 50 1

wordcount 37.5 3

Sort 2.5 1

wordcount 30 2

Terasort 50 1

Terasort 1 1

Terasort 80 4

Pagerank 0.5 5

Kmeans 0.75 1

Terasort 0.5 1

Terasort 67.5 4

Terasort 57.5 1

Terasort 60 1

Figure 5.2.1.5 shows a scattering plot for the workload data sizes distribution

against the Hadoop cluster hardware categories, regardless of the workload type.

Figure 5.2.1.6 shows a descriptive statistics of the dataset, wherein the second column

from the left concludes statistics about the [Data Size (GB)] column in Table 5.2.1.2, and

the third column concludes statistics about the [Resource Category] column in Table

5.2.1.2.

51

Figure 5.2.1.5: The workload data sizes distribution against the cluster resource categories

Figure 5.2.1.6: Descriptive Statistics of the Dataset

To illustrate the approach of our energy-aware Hadoop cluster, when we look at

Table 5.2.1.1, Table 5.2.1.2 and Appendix B under the (Wordcount Workload

Characteization) section, for the cluster to process a 30 GB Wordcount workload, the

framework will decommission (disconnect a node from the cluster and do not process

any tasks on it) or power off 4-DataNodes from the 7-nodes cluster, and process the 30

GB Wordcount workload on a 3-nodes (1 NameNode and 2 DataNodes) Hadoop

52

cluster, wherein the process will consume 0.086 KWh of power, which represents a

reduction in the power consumption by at most 51.96% than processing this Wordcount

workload on the entire 7-nodes Hadoop cluster in the experiment, and reducing power

consumption by at least 3.37% than processing this workload on 4-nodes Hadoop

cluster. More on the result analysis will be discussed in Chapter 6.

5.2.2 Data Preprocessing and Model Training

In order to obtain high accuracy of a ML model, dataset in the study has to get

through a pipeline of preparation processes, starting from loading the dataset until

training the model. The steps of preparation the dataset are shown below:

 Loading the dataset: We loaded our experimental data from “Data.xlsx”

spreadsheet using Python 3 pandas library into jupyter Notebook.

 Extracting the features and the target values: We have two features in the dataset;

‘Workload Type’�and ‘Data Size (GB)’, we loaded their values in a variable and

we loaded the target ‘Resource Category’ values into another variable for further

data processing.

 One-hot encode data: In order�to use the categorical feature ‘Workload Type’ for�

training the ML model, we encoded (binary variables representation) this feature

using the get_dummies() method from pandas. Figure 5.2.2.1 below shows the

first 5 rows in the dataset after the one-hot data encoding.

53

Figure 5.2.2.1: One-hot Data Encoded

 Convert data into arrays: We converted the features and the label data into arrays

using numpy python library, to prepare for data splitting.

 Splitting the dataset: We split the dataset (124 data records) into 85% for training

the model, and 15% of the dataset for testing the trained model on unseen data

and evaluate the model accuracy.

 Standardized scaler: In order to ensure that there will not be feature data with high

order of magnitude that will dominate the ML estimator, we rescaled the

features (training and testing features) using standardized scaler, as a method to

avoid the high variation in the data magnitudes.

 ML model training: We instantiated three ML models; logistic regression, random

forest classifier, and support vector machine classifier. We fitted the three models

with the same training dataset.

 ML model prediction evaluation: The three ML models were evaluated against the

same test dataset, where we generated the confusion matrix and classification

report for each model, for us to compare and decide which one is more suitable

54

for our energy-aware Hadoop framework. The SVM and the random forest

classifiers performed the same with a higher degree of accuracy than the logistic

regression model. We will discuss more about the ML models testing results in

chapter 6.

55

Chapter 6. Results Analysis and Conclusion

6.1 Workload Profiling Analysis

Our experiment observations show that as we increased the number of the

cluster’s nodes�i.e. to 6-nodes or 7-nodes Hadoop cluster, when processing I/O bound

jobs such as Terasort and Sort; the power consumption increased significantly.

6.1.1 Terasort Workload Profiles

In this section, we are going to demonstrate the Hadoop cluster’s�power

consumption at different Terasort workloads, and explain our approach of profiling

these workloads. Figure 6.1.1.1 shows that the Terasort workloads in the range from 1

GB to 65 GB consume less power when we process them on 2-nodes cluster, based on

Table 5.2.1.1, 2-nodes cluster is a resource category 1, therefore, we state that the

Terasort workloads in the range from 1 GB to 65 GB require resource category 1. In

addition, Figure 6.1.1.2 shows that the power consumption of processing a 65 GB

Terasort workload on 2-nodes cluster (category 1) is lesser than processing the same

workload on the other cluster resource categories (refer to Table 5.2.1.1). Similarly,

Figure 6.1.1.3 shows that the profile of the 75 GB and 80 GB Terasort workloads would

be category 4, processing 75 GB & 80 GB Terasort workloads consume less power on 5-

nodes cluster than processing them on the other cluster resource categories. We can find

the rest of the Tearsort workload profiles in Appendix B.

56

Figure 6.1.1.1: Resources required to Process 1 GB –�65 GB Terasort Workload

Figure 6.1.1.2: Resources required to Process 65 GB Terasort workload in our Experiment

57

Figure 6.1.1.3: Resources required to Process 75 GB & 80 GB Terasort Workload

6.1.2 Sort Workload Profiles

In this section, we are going to demonstrate the Hadoop cluster’s�power

consumption at different Sort workloads. In chapter 5, Figure 5.2.1.2 shows that the 25

GB –�65 GB Sort workload’s profile is the category 1 cluster resource (refer to Table

5.2.1.1). Figure 6.1.2.1 below shows that the power consumption of processing 40 GB &

65 GB Sort workloads on 2-nodes cluster (category 1) is lesser than processing the same

workloads on the other cluster resource categories. In chapter 5, Figure 5.2.1.3 shows

that the profile of 70 GB & 72.5 GB Sort workloads is category 4 which is 5-nodes

cluster. We can find the rest of the Sort workload profiles in Appendix B.

58

Figure 6.1.2.1: Resources required to Process 40 GB –�72.5 GB Sort workload

6.1.3 Wordcount Workload Profiles

In this section, we are going to demonstrate the Hadoop cluster’s�power

consumption at different Wordcount workloads. Figure 6.1.3.1 shows that the

Wordcount workloads 20 GB & 22.5 GB consume less power when we process them on

2-nodes cluster which is a resource category 1 (refer to Table 5.2.1.1). The Wordcount

workloads 25 GB, 27.5 GB, and 30 GB consume less power when we process them on 3-

nodes cluster which means that they have a category 2 resource profile. Figure 6.1.3.2

shows that processing a 37.5 GB Wordcount workload on 4-nodes cluster consume less

power, therefore, the Wordcount workload 37.5 GB has a category 3 resource profile.

We can find the rest of the Wordcount workload profiles in Appendix B.

59

Figure 6.1.3.1: Resources required to Process 20 GB –�30 GB Wordcount workload

Figure 6.1.3.2: Resources required to Process 25 GB –�37.5 GB Wordcount workload

60

6.1.4 Pagerank Workload Profiles

In this section, we are going to demonstrate the Hadoop cluster’s power�

consumption at different Pagerank workloads. Figure 6.1.4.1 shows that 1 GB Pagerank

workload consumes less power it is processed on 6-nodes cluster which means that 1

GB Pagerank workload has a category 5 resource profile (refer to Table 5.2.1.1),

similarly, the 2.5 Pagerank workload has a category 4 resource profile. Figure 6.1.4.2

Figure 6.1.4.1: Resources required to Process 1 GB & 2.5 GB Pagerank workload

Figure 6.1.4.2 and Figure 6.1.4.3 show that 5 GB, 10 GB, 25 GB, and 35 GB consume less power

when they are processed on a 5-nodes cluster, which means that they have a category 4 resource

profile. We can find the rest of the Pagerank workload profiles in Appendix B.

61

Figure 6.1.4.2: Resources required to Process 5 GB & 10 GB Pagerank workload

Figure 6.1.4.3: Resources required to Process 25 GB & 35 GB Pagerank workload

62

6.1.5 Kmeans Workload Profiles

In this�section, we are going to demonstrate the Hadoop cluster’s power�

consumption at different Kmeans workloads. Figure 6.1.5.1 shows that 1 GB and 5 GB

Kmeans workloads consume less power when they are processed on 2-nodes cluster,

which means that they have a category 1 resource profile (refer to Table 5.2.1.1), also,

the Kmeans workload of 22.5 GB consume less power when it is processed on 6-nodes

cluster, which means that 22.5 GB Kmeans workload has a category 5 resource profile.

We can find the rest of the Kmeans workload profiles in Appendix B.

Figure 6.1.5.1: Resources required to Process 1 GB –�22.5 GB Kmeans workload

63

6.1.6 Key Observations

In our study, it has been proven that while processing a MapReduce job in

Hadoop cluster, despite of the workload size and type, the NameNode consumes the

lowest amount of power in the cluster to complete the job, see our experiment

observations in Appendix B.

Scaling up Hadoop cluster size (commissioning more DataNodes to the cluster)

to process a MapReduce job, does not always lead to an increase of the power

consumption i.e. in our experimental setup, processing a 1 GB Pagerank workload on 6-

nodes Hadoop cluster (1 NameNode and 5 DataNodes) would consume a power of

0.014 KWh, which represents approximately a 41.67% reduction in the cluster power

consumption than processing the same workload on only 2-nodes (1 NameNode and 1

DataNode) of the cluster, as it would consume a power of 0.024 KWh.

6.2 Machine Learning Models Evaluation

As we mentioned in chapter 5, among the three ML models that we compared,

the logistic regression was the model that had the lowest prediction accuracy score of

89.47% on the testing data. Figure 6.2.1 shows the confusion matrix which describes the

performance of the logistic regression classifier model on the testing dataset. The same

testing dataset which is 19 data samples (15% split from the experimental collected data

as we mentioned in chapter 5) was used to test the three ML models.

64

Figure 6.2.1: Confusion Matrix of the Logistic Regression Model

The left vertical axis represents the true labels in the testing dataset and the horizontal

axis represents the predicted labels. As we can see in Figure 6.2.1 there are 2 samples of

the testing data were incorrectly predicted which are: the actual label 5 was predicted as

label 4 once, and the actual label 2 was predicted as label 4 once, whereas the actual

label 1 was correctly predicted, 13 times, and the actual label 4 was correctly predicted,

4 times. Hence, the model accuracy score on the testing data is calculated as 17 correctly

predicted labels out of 19 data samples equals to 89.47%.

From the confusion matrix in Figure 6.2.1, the actual label 4 was predicted 6

times, 2 of these predictions were false and 4 predictions were true, therefore, the

4
prediction precision of label 4 is × 100 ≈ 0.67% as shown in the classification report

6

(precision, recall, and f1-score) of the logistic regression model in Figure 6.2.2 below.

65

Figure 6.2.2: Classification Report of the Logistic Regression Model

Another way of visualizing the model’s performance is shown in Figure 6.2.3, as

it depicts the actual testing labels vs the predicted labels.

Figure 6.2.3: Predicting the Testing Data in the Logistic Regression Model

The SVM classifier performed exactly the same as the random forest classifier on the

testing data by tuning its polynomial kernel function’s degree, wherein both classifier’s

66

accuracy scored is 94.74%. The�random forest classifier’ accuracy score 94.74% was obtained by

our initial random forest classifier which was with 100 estimators. We experienced changing the

number of the estimators by step of 100 to 1000 estimators, however, the random forest

classifier accuracy did not change, as shown in Figure 6.2.4 below.

Figure 6.2.4: Random Forest Classifier Accuracy Score with Different Estimators Value

On the other hand, the SVM classifier accuracy score was increased linearly from 84.21%

to 94.74% by changing the classifier polynomial kernel function’s degree�from 2 to 5 degrees, as

shown in Figure 6.2.5 below.

Figure 6.2.5: Effect of the Polynomial Kernel Function degrees on the SVM Classifier Acc. Score

67

The SVM classifier accuracy score with polynomial kernel function at degree 5 was the

highest among the other kernel functions, as the accuracy score was 89.47%, 84.21%, and 78.95%

with linear kernel function, rbf kernel function, and sigmoid kernel function, respectively as

shown in Figure 6.2.6.

Figure 6.2.6: SVM Classifier Accuracy Score against Different Kernel Function Types

Since the random forest classifier and the SVM classifier (with polynomial kernel

function at degree 5) have the same performance, then we are going to demonstrate the

confusion matrix and the classification report of the random forest classifier and the

same would apply to the SVM classifier performance results.

Figure 6.2.7 shows that there is 1 sample of the testing data was incorrectly

predicted which is: the actual label 2 was predicted as label 4 once, whereas the actual

label 1 was correctly predicted, 13 times, the actual label 4 was correctly predicted, 4

68

times, and the actual label 5 was correctly predicted once. Hence, the model accuracy

score on the testing data is calculated as 18 correctly predicted labels out of 19 data

samples equals to 94.74%.

Figure 6.2.7: Confusion Matrix of the Random Forest Classifier Model

From the confusion matrix in Figure 6.2.7, the actual label 4 was predicted 5

times, 1 of these predictions was false and 4 predictions were true, therefore, the

4
prediction precision of label 4 is × 100 = 0.80% as shown in the classification report

5

(precision, recall, and f1-score) of the random forest classifier model in Figure 6.2.8

below.

69

Figure 6.2.8: Classification Report of the Random Forest Classifier Model

Another way of visualizing the model’s performance is shown in Figure 6.2.9, as�

it depicts the actual testing labels vs the predicted labels.

Figure 6.2.9: Predicting the Testing Data in the Random Forest Classifier Model

70

Since we have two ML models that perform the same on our testing dataset, we can use

either model. Therefore, we decided to go further with the Random Forest Classifier as the

prediction model in our energy-aware Hadoop cluster framework.

6.3 Data Block Replications Impact

As illustrated in Chapter 2, one of the most significant features of Hadoop HDFS

is that it has a high machine failure tolerance. HDFS achieves the machine fail tolerance

by splitting the input data into blocks and replicates these data blocks into the cluster’s

DataNodes with a replication factor i.e. 1, 3…etc.�as if one machine fails or its

connection with the NameNode gets broken or disrupted, the data is still accessible

from the other machines.

Data replication through the network of connected Hadoop cluster nodes

consumes a good amount of power during the workload processing. The replication

factor in Hadoop configuration tells the HDFS how many replicas of the same data

block will be placed in the cluster’s nodes. In our study, and throughout the entire

experiment we have set the replication factor to 3 replicas, therefore all our observations

of power consumption were based on using 3 replicas.

In order to study the impact of the replication factor on the power consumption,

we have changed the replication factor to 1 replica, then we tested this new replication

factor on the processing of two types of workloads, Sort workload which is an I/O

71

bound operation, and Pagerank workload which is a CPU bound operation. We

processed a 65 GB Sort workload on 2, 3, 4, and 5-nodes Hadoop cluster, and we

processed a 10 GB Pagerank workload on 2, 3, 4, and 5-nodes Hadoop cluster.

Figure 6.3.1 depicts the significant drop of the power consumption while using

replication factor of 1. The power consumption of processing 65 GB Sort workload on 2-

nodes has been reduced by 7.84%, power consumption has been reduced by 40.24%

when processing the same workload on 3-nodes, power consumption has been reduced

by 33.74% when processing the same workload on 4-nodes, and power consumption

has been reduced by 38.36% when processing the same workload on 5-bodes Hadoop

cluster. As we can notice, in our energy-aware Hadoop framework, and if our Hadoop

cluster is comprised of only 5-nodes (1 NameNode and 4 DataNodes), so, in this

environment if we are using 1 replica while process a 65 GB Sort workload, then the

framework will process this workload on the 5-nodes Hadoop cluster which will save at

least 4.26% KWh of power, however, if we are using replication factor 3, then the

framework will process the 65 GB Sort workload on 2-nodes (1 NameNode and 1

DataNode) Hadoop cluster which will save at least 30.17% KWh of power.

72

Figure 6.3.1: Sort Workload-Data Block Replications Impact on Power Consumption

Using the same assumption that our Hadoop cluster is only 5-nodes (1

NameNode and 4 DataNodes) Figure 6.3.2 shows that in our energy-aware Hadoop

framework, 10 GB Pagerank workload will be processed on 5-nodes in both cases of the

replication factors, as we will save at least 11.86% KWh of power while using

replication factor 1, and we will save at least 8.20% KWh of power while using

replication factor 3. We can notice that power consumption has been reduced by 5.19%

when processing 10 GB Pagerank workload on 2-nodes Hadoop cluster with replication

factor 1, the power consumption has been reduced by 7.35% when processing the same

workload on 3-nodes with replication factor 1, the power consumption has been

reduced by 3.28% when processing the same workload on 4-nodes with replication

73

factor 1, and the power consumption has been reduced by 7.14% when processing the

same workload on 5-nodes with replication factor 1.

Figure 6.3.2: Pagerank Workload-Data Block Replications Impact on Power Consumption

6.4 Energy-Aware Hadoop System Architecture

When a client node submits a job to Hadoop NameNode, by default Hadoop

framework will split the input data into data blocks, replicates the blocks in the cluster’s

nodes based on replication factor, and then uses the cluster nodes resources to process

and complete the job and stores the output file(s) in the HDFS, where the client can

access it.

74

Figure 6.4.1 shows the default Hadoop framework architecture, the resource

manager node decides upon the resources i.e. CPU, network resources, memory, disk

space…etc. for each DataNode (refer to chapter 2 for more details).

Figure 6.4.1: The Default Hadoop Cluster Framework before Integrating our Intelligent Module

In the above architecture, the resource manager node maintains a live connection with

all the DataNodes in the cluster in order to manage the job execution, and the resource

provisioning decision does not take in the consideration the amount of power that will

be consumed to execute the job, therefore, it is highly likely that a certain extra

unnecessary amount of power will be consumed with each job execution process.

On the contrary, our proposed energy-aware Hadoop framework does take in

the consideration the minimum amount of power that is needed to execute a job, and so

the cluster rescales up or down based on the minimum number of nodes that are

required to complete the job. Figure 6.4.2 shows our proposed energy-aware Hadoop

75

framework, where the NameNode is equipped with a ML-based module that assists the

resource manager in managing the cluster’s resources.

Figure 6.4.2: Energy-Aware Hadoop Cluster Framework Equipped with our ML-based Module

In the proposed framework, upon the NameNode (Master Node) receiving a job, based

on the job profile (characteristics) the ML-based module will predict the minimum

necessary cluster resources that are required to execute the job, based on the prediction

number of DataNodes will be either decommissioned from the cluster or commissioned

to the cluster to complete the job execution in an energy-aware environment.

Example: Consider submitting a 37.5 GB Wordcount workload to Hadoop cluster

framework that is shown in Figure 6.4.2, based on our experimental observation (see

Appendix B) a 37.5 GB Wordcount workload would be processed on a 4-nodes Hadoop

cluster (1 NameNode and 3 DataNodes). With the workload profile and the assistance

of the ML-based module in the NameNode, the resource requirements (4-nodes) will be

76

predicted. Figure 6.4.3 shows the expected system behavior with the ML-based module

assistance.

Figure 6.4.3: Example of Decommissioning 3 DataNodes based on the ML-based Module

Therefore, out of the 7-nodes in the cluster 3 Datanodes will be decommissioned (which

means disconnected from the cluster, or put in standby mode, or completely powered

off) from the cluster, and the 37.5 GB Wordcount workload will be processed on 4-

nodes cluster. Processing the workload on 4-nodes (the power consumption is 0.104

KWh) instead of 7-nodes cluster (the power consumption is 0.225 KWh) would save

about 53.78% of the operation’s�power consumption.

6.5 Conclusion

In this study, we have proved that enterprise datacenters can potentially increase

their business profitability by decreasing the operating costs when adopting intelligent

77

solutions in production. The energy cost in datacenters while processing batch jobs can

significantly be decreased, by reducing the operations power consumption through our

proposed smart data placement solution in Hadoop clusters. Our results analysis

showed that by augmenting the traditional Hadoop framework with our ML-based

module which makes predictions based on the workload profile, the power

consumption of processing workloads can be reduced by more than 50% in some cases.

In addition, one of the most valuable observations in our study is that by

decreasing the data blocks replication factor in Hadoop cluster, the power consumption

can be reduced significantly. Such feature can be added to our ML-based module based

on task requirements and business need.

6.6 Future Work and Scalability

Developing an energy-aware and auto-scale framework solution for Hadoop

cluster can be one of the most promising continuation to our current study, where we

can replace the manual commissioning/decommissioning technique of DataNodes by

an intelligent framework that is able to facilitate Hadoop cluster scalability. In the

production environment this auto-scale framework solution can be implemented in one

of two ways:

1- A standalone smart module that takes the decision by the leverage of ML

algorithm on the required DataNodes to be connected with the NameNode in

78

Hadoop cluster, decommission the unneeded DataNodes, then place the data in

the HDFS as a preparation step for processing in Hadoop cluster.

2- An intelligent module integrated in Hadoop source code as a novel energy-

aware Hadoop distribution. In this framework, Hadoop delegates its preliminary

phase of the resource management to the integrated module, which uses ML

algorithm to energy-aware rescaling the cluster, then place the data in the HDFS

for processing.

79

Bibliography

Lublinsky, B., Smith, K. T., & Yakubovich, A. (2013). Professional Hadoop Solutions.

Indianapolis, IN: John Wiley & Sons

Qureshi, A., Weber, R., Balakrishnan, H., Guttag, J., & Maggs, B. (2009). Cutting the

electricity bill for Internet-Scale systems. SIGCOMM’09. doi:

10.1145/1592568.1592584

Top 10 industries using Big Data and 121 companies who hire Hadoop developers.

(2016). Retrieved from https://www.dezyre.com/article/top-10-industries-using-

big-data-and-121-companies-who-hire-hadoop-developers/69

Ghemawat, S., Gobioff, H., & Leung, S-T., (2003). The Google File System. Google.

Retrieved from https://storage.googleapis.com/pub-tools-public-publication-

data/pdf/035fc972c796d33122033a0614bc94cff1527999.pdf

Dean, J. & Ghemawat, S., (2004). MapReduce: Simplified Data Processing on Large

Clusters. Google. Retrieved from https://storage.googleapis.com/pub-tools-public-

publication-data/pdf/16cb30b4b92fd4989b8619a61752a2387c6dd474.pdf

Rouse, M., (2019). Guide to big data analytics tools, trends, and best practices. Tech

Target, Search Data Management, Retrieved from

https://searchdatamanagement.techtarget.com/definition/Hadoop

https://www.dezyre.com/article/top-10-industries-using-big-data-and-121-companies-who-hire-hadoop-developers/69
https://www.dezyre.com/article/top-10-industries-using-big-data-and-121-companies-who-hire-hadoop-developers/69
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/035fc972c796d33122033a0614bc94cff1527999.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/035fc972c796d33122033a0614bc94cff1527999.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/16cb30b4b92fd4989b8619a61752a2387c6dd474.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/16cb30b4b92fd4989b8619a61752a2387c6dd474.pdf
https://searchdatamanagement.techtarget.com/definition/Hadoop

80

White, T. (2015). Hadoop: The Definitive Guide. Sebastopol, CA: O’Reilly Media Inc. 2015-

03-19T19:44:25Z

Agarwal, S. & Khanam Z., (2015). MapReduce: A Survey Paper on Recent Expansion.

International Journal of Advanced Computer Science and Applications, 6(8)

Lee C-W, Hsieh K-Y, Hsieh S-Y, & Hsiao H-C, (2014). A Dynamic Data Placement

Strategy for Hadoop in Heterogeneous Environments. El Sevier Big Data Research,

1, 14 –�22. doi: 10.1016/j.bdr.2014.07.002

Brownlee J. Supervised and Unsupervised Machine Learning Algorithms (2016)

Machine Learning Algorithms. Retrieved from URL

https://machinelearningmastery.com/supervised-and-unsupervised-machine-

learning-algorithms/

Logic Regression. (2017). Retrieved from URL: https://ml-

cheatsheet.readthedocs.io/en/latest/logistic_regression.html

Multiple Linear Regression. (1997-1998). Retrieved from URL:

http://www.stat.yale.edu/Courses/1997-98/101/linmult.htm

Soni, D. Introduction to Naïve Bayes Classification. (2018). Retrieved from URL

https://towardsdatascience.com/introduction-to-naive-bayes-classification-

4cffabb1ae54

Donges, N. A complete Guide to the Random Forest Algorithm. (2019). Retrieved from

URL https://builtin.com/data-science/random-forest-algorithm

https://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html
https://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html
http://www.stat.yale.edu/Courses/1997-98/101/linmult.htm
https://builtin.com/data-science/random-forest-algorithm
https://towardsdatascience.com/introduction-to-naive-bayes-classification
https://machinelearningmastery.com/supervised-and-unsupervised-machine

81

Apruzzese, G., Colajanni, M., Ferretti, L., Guido, A., Marchetti, M. (2018). On the

effectiveness of machine and deep learning for cyber security. 10th International

conference on cyber conflic (CyCon). doi: 10.23919/CYCON.2018.8405026

Patel, S. Chapter 2: SVM (Support Vector Machine) –�Theory. (2017). Retreived from

URL https://medium.com/machine-learning-101/chapter-2-svm-support-vector-

machine-theory-f0812effc72

Dua S. and Du, X., (2011). Data Mining and Machine Learning in Cyber Security. Boca

Raton, FL: Auerbach Publications. ISBN: 13:978-1-4398-3943-0

Kaushik S. An Introduction to Clustering and different methods of clustering. (2016).

Retrieved from URL: https://www.analyticsvidhya.com/blog/2016/11/an-

introduction-to-clustering-and-different-methods-of-clustering/

Hacker, T. J., & Mahadik, K. (2011). Flexible resource allocation for reliable virtual

cluster computing systems. International Conference for High Performance

Computing, Networking, Storage and Analysis. doi: 10.1145/2063384.2063448

Tian, F., & Chen, K. (2011). Towards Optimal Resource Provisioning for Running

MapReduce Programs in Public Clouds. IEEE 4th International Conference on Cloud

Computing. doi: 10.1109/CLOUD.2011.14

Palanisamy, B., Singh, A., & Liu, L. (2015). Cost effective resource provisioning for

MapReduce in a cloud. IEEE Transactions on Parallel and Distributed Systems, 26(5),

1265 –�1279. doi: 10.1109/TPDS.2014.2320498

https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://ieeexplore.ieee.org/xpl/conhome/6105609/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6105609/proceeding
https://doi.org/10.1145/2063384.2063448
https://ieeexplore.ieee.org/xpl/conhome/6008653/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6008653/proceeding
https://doi.org/10.1109/CLOUD.2011.14
https://doi.org/10.1109/TPDS.2014.2320498
https://medium.com/machine-learning-101/chapter-2-svm-support-vector

82

Jalaparti, V., Ballani, H., Costa, P., Karagiannis, T., & Rowstron, A. (2012). Bazaar:

Enabling predictable performance in datacenters. Microsoft Res., Cambridge, U.K.,

Tech. Rep. MSR-TR-2012-38, 2012

Kaushik, R. T., Bhandarkar, M., & Nahrstedt, K. (2010). Evaluation and Analysis of

GreenHDFS: A Self-Adaptive, Energy-Conserving Variant of the Hadoop

Distributed File System. IEEE Second International Conference on Cloud Computing

Technology and Science. doi: 10.1109/CloudCom.2010.109

Goiri, I., Le, K., Nguyen, T. D., Guitart, J., Torres, J., & Bianchini, R. (2012).

GreenHadoop: leveraging green energy in data-processing frameworks.

Proceeding EuroSys '12 Proceedings of the 7th ACM european conference on Computer

Systems, 57 –�70. doi: 10.1145/2168836.2168843

Wirtz, T., & Ge, R. (2011). Improving MapReduce energy efficiency for computation

intensive workloads. 2011 International Green Computing Conference and

Workshops. doi: 10.1109/IGCC.2011.6008564

Lang, W., & Patel, J. M. (2010). Energy management for MapReduce Clusters.

Proceedings of the VLDB Endowment, 3(1-2), 129 –�139. doi:

10.14778/1920841.1920862

Sandholm, T., Lai, K. (2009). MapReduce optimization using regulated dynamic

prioritization. SIGMETRICS '09 Proceedings of the eleventh international joint

https://ieeexplore.ieee.org/xpl/conhome/5706873/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5706873/proceeding
https://doi.org/10.1109/CloudCom.2010.109
http://eurosys2012.unibe.ch/
https://ieeexplore.ieee.org/xpl/conhome/5996362/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5996362/proceeding
https://doi.org/10.1109/IGCC.2011.6008564
http://conferences.sigmetrics.org/sigmetrics/2009/

83

conference on Measurement and modeling of computer systems, 37(1), 299 –�310. doi:

10.1145/2492101.1555384

Wang, X., Shen, D., Yu, G., Nie, T., & Kou Y. (2013). A Throughput Driven Task

Scheduler for Improving MapReduce Performance in Job Intensive

Environments. IEEE International Congress on Big Data. doi:

10.1109/BigData.Congress.2013.36

Verma, A., Cherkasova, L., & Campbell, R. H. (2011). ARIA: automatic resource

inference and allocation for mapreduce environments. ICAC '11 Proceedings of the

8th ACM international conference on Autonomic computing. 235 –�244. doi:

10.1145/1998582.1998637

Kurazumi, S., Tsumura, T., Saito, S., Matsuo, H. (2012). Dynamic Processing Slots

Schedulaing for I/O Intensive Jobs of Hadoop MapReduce. IEEE Third

International Conference on Networking and Computing. doi: 10.1109/ICNC.2012.53

Manzanares, A., Qin, X., Ruan, X., & Yin, S. (2011). Pre-bud: Prefetching for energy-

efficient parallel i/o systems with buffer disks. ACM Transactions on Storage

(TOS), 7(1), 3. doi: 10.1145/1970343.1970346

Nayak, R., (2018). Hadoop Performance Evaluation by Benchmarking and Stress Testing

with TeraSort and TestDFSIO. Retrieved from https://medium.com/ymedialabs-

innovation/hadoop-performance-evaluation-by-benchmarking-and-stress-

testing-with-terasort-and-testdfsio-444b22c77db2

https://doi.org/10.1109/BigData.Congress.2013.36
http://www.cis.fiu.edu/conferences/icac2011/
https://ieeexplore.ieee.org/xpl/conhome/6423129/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6423129/proceeding
https://doi.org/10.1109/ICNC.2012.53
https://medium.com/ymedialabs-innovation/hadoop-performance-evaluation-by-benchmarking-and-stress-testing-with-terasort-and-testdfsio-444b22c77db2
https://medium.com/ymedialabs-innovation/hadoop-performance-evaluation-by-benchmarking-and-stress-testing-with-terasort-and-testdfsio-444b22c77db2
https://medium.com/ymedialabs-innovation/hadoop-performance-evaluation-by-benchmarking-and-stress-testing-with-terasort-and-testdfsio-444b22c77db2

84

Huang S., Huang J., Liu Y., Yi L., and Dai J., (2010) “HiBench: A�

Representative and Comprehensive Hadoop Benchmark Suite,” Intel Asia-Pacific

Research and Development Ltd., Shanghai, P.R. China, 200241.

Hadoop Architecture in Detail –�HDFS, YARN & MapReduce (2019). Retrieved from

URL: https://data-flair.training/blogs/hadoop-architecture/

Hadoop HDFS Architecture Explanation and Assumptions (2020) Retrieved from URL:

https://data-flair.training/blogs/hadoop-hdfs-architecture/

https://data-flair.training/blogs/hadoop-architecture/
https://data-flair.training/blogs/hadoop-hdfs-architecture/

85

Appendix A

The Hadoop cluster main configuration settings in this study are included in the

following four files:

core-site.xml configuration:

86

hdfs-site.xml configuration:

As we can see in the above configuration that the replication factor in our expeiment is

set to 3, and the data blocksize is set to 512 MB

87

mapred-site.xml configurations:

88

yarn-site.xml configuration:

89

90

Appendix B

The below tables depict the study observations. The table’s column�[Data (GB)]

represents the workload size in Giga Byte, the column [CPU] represents the average CPU

utilization of the node while processing the corresponding data size that is shown in the

table, the [Mem] column represents the average memory utilization, the [HDD] column

represents the average storage utilization of the node while processing the corresponding

workload, the [Exec Time] column represents the job execution time and the [Total

Power] column represents�the entire cluster’s total power�consumption in (KWh) to

complete the MapReduce job.

Note

The highlighted cells in the table indicate that X workload should be processed by Y

number of nodes in order to consume the lowest amount of power in Hadoop cluster,

which concludes our study�goal i.e. the optimal number�of cluster’s nodes for�processing

a 65 GB Terasort workload with the lowest amount of power consumption is 2-nodes,

and so on so forth for all the workloads shown in the tables.

Terasort workload characterization

 2-nodes Hadoop cluster

NameNode DataNode

Data

(GB) CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

91

0.25 4.61 23.52 8.00 43.72 23.75 3.00 0:05 0.004

0.5 4.11 23.45 8.00 43.55 23.99 3.00 0:06 0.004

0.75 3.95 23.47 8.00 44.62 25.13 3.00 0:06 0.005

1 3.68 23.68 8.00 44.62 26.44 3.00 0:06 0.005

2.5 3.11 23.74 8.00 50.49 26.58 6.00 0:09 0.008

5 2.29 23.83 8.00 48.57 27.75 9.00 0:13 0.012

7.5 1.92 23.57 8.00 49.20 27.17 9.00 0:18 0.014

10 1.71 24.14 8.00 48.49 29.25 16.00 0:23 0.020

12.5 1.52 24.37 8.00 44.95 27.00 13.00 0:28 0.025

15 1.41 24.11 8.00 44.52 27.99 17.00 0:34 0.027

17.5 1.28 24.38 8.00 42.71 27.40 24.00 0:40 0.032

20 1.24 24.78 8.00 42.92 27.26 22.00 0:45 0.036

22.5 1.24 24.20 8.00 50.92 27.78 26.00 0:44 0.037

50 0.86 25.40 8.00 36.24 28.72 59.00 1:54 0.084

65 0.79 26.07 36.00 34.02 24.14 88.00 2:33 0.114

 3-nodes Hadoop cluster

NameNode Datanode 1 DataNode 2

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

0.25 7.18 23.23 8.00 34.54 38.42 2.00 50.60 20.26 3.00 0:03 0.004

0.5 6.42 23.02 8.00 31.90 38.12 3.00 50.32 20.42 3.00 0:03 0.006

0.75 6.44 22.64 8.00 34.54 39.25 3.00 56.75 21.18 3.00 0:04 0.005

1 6.25 23.63 8.00 43.11 40.90 3.00 45.91 20.15 3.00 0:03 0.005

15 1.60 24.14 8.00 25.81 47.51 12.00 33.11 26.90 17.00 0:28 0.032

17.5 1.62 24.38 8.00 34.19 50.08 15.00 30.18 28.79 13.00 0:29 0.035

20 1.56 24.75 8.00 37.54 48.72 16.00 34.04 29.35 16.00 0:29 0.038

22.5 1.53 24.30 8.00 34.96 46.09 17.00 38.19 27.24 23.00 0:31 0.042

50 1.11 25.22 8.00 27.24 46.75 34.00 32.88 26.45 49.00 1:12 0.093

62.5 0.87 25.85 36.00 18.78 46.38 39.00 28.30 22.35 48.00 1:54 0.128

65 0.88 25.68 36.00 21.63 37.94 40.00 27.66 22.76 50.00 1:53 0.127

67.5 0.89 25.32 36.00 25.58 37.33 49.00 25.90 21.35 45.00 1:54 0.131

70 0.89 24.73 36.00 24.48 37.75 51.00 24.60 21.46 48.00 1:58 0.132

72.5 0.86 25.43 36.00 19.16 36.61 51.00 27.65 22.51 57.00 2:07 0.141

75 0.84 25.18 36.00 20.24 37.48 66.00 25.82 21.89 52.00 2:10 0.145

77.5 0.86 25.89 36.00 19.81 36.02 45.00 31.47 22.89 62.00 2:07 0.147

80 0.82 25.43 36.00 15.64 37.05 55.00 27.74 21.60 61.00 2:32 0.163

82.5 0.80 25.61 36.00 20.51 46.78 53.00 25.43 22.08 60.00 2:27 0.163

92

 4-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2 DataNode 3

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

65 0.98 25.36 36.00 22.26 46.72 46.00 21.53 22.48 48.00 29.87 21.58 36.00 1:28 0.135

72.5 1.02 25.59 36.00 19.45 35.45 43.00 23.91 22.33 51.00 25.40 21.40 43.00 1:35 0.145

75 0.98 25.36 36.00 20.48 34.47 46.00 26.38 22.47 47.00 26.91 21.86 46.00 1:32 0.148

77.5 0.98 25.45 36.00 20.06 34.89 45.00 28.48 21.40 52.00 24.54 23.78 49.00 1:40 0.158

80 0.90 25.49 36.00 15.54 45.26 51.00 22.23 21.21 47.00 27.56 21.34 56.00 1:52 0.171

82.5 0.92 25.40 36.00 21.12 40.62 48.00 24.05 21.03 50.00 24.52 21.34 53.00 1:52 0.173

85 0.95 25.41 36.00 16.61 36.83 56.00 26.27 21.36 60.00 24.19 20.56 51.00 1:54 0.173

100 0.75 25.96 35.00 15.13 36.74 63.00 19.13 20.63 58.00 26.38 20.39 70.00 2:19 0.209

 5-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2 DataNode 3

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD

62.5 1.17 25.24 36.00 18.79 46.41 30.00 22.11 20.37 34.00 26.87 20.78 30.00

65 1.18 24.97 36.00 22.44 43.76 31.00 18.23 21.31 30.00 26.08 20.59 34.00

67.5 1.16 24.89 36.00 21.64 44.99 36.00 21.68 21.88 31.00 22.10 19.80 34.00

70 1.12 25.23 36.00 17.53 34.21 36.00 21.43 20.95 35.00 23.94 20.89 30.00

72.5 1.13 25.26 36.00 15.36 33.89 34.00 20.12 22.15 35.00 21.88 19.36 31.00

75 1.10 25.28 36.00 20.76 34.00 39.00 21.47 21.35 38.00 28.82 20.90 36.00

77.5 1.10 24.96 36.00 17.90 36.90 40.00 23.89 21.56 33.00 25.68 21.42 38.00

80 1.03 25.14 36.00 18.07 36.82 41.00 23.44 22.74 35.00 20.78 19.97 41.00

82.5 1.08 25.60 36.00 22.33 43.58 44.00 27.86 21.46 43.00 23.34 24.00 37.00

85 1.04 25.35 36.00 19.61 45.11 37.00 21.32 21.99 38.00 23.82 19.68 34.00

100 0.85 25.54 35.00 14.48 37.03 43.00 20.13 22.40 44.00 23.86 19.47 49.00

DataNode 4

Data

(GB) CPU Mem HDD

Exec

Time

Total

Power

62.5 16.60 20.25 15.00 1:05 0.118

65 21.67 20.81 17.00 1:03 0.118

67.5 17.73 20.71 17.00 1:09 0.128

70 18.02 19.96 19.00 1:11 0.132

72.5 23.16 20.50 20.00 1:12 0.130

75 16.74 21.39 18.00 1:14 0.141

93

77.5 13.41 24.33 21.00 1:22 0.150

80 17.05 20.31 18.00 1:26 0.155

82.5 17.40 19.28 19.00 1:18 0.154

85 18.03 19.62 25.00 1:30 0.166

100 13.28 18.69 25.00 1:53 0.201

 6-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2 DataNode 3

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD

65 0.93 25.30 35.00 16.58 35.11 31.00 18.75 25.80 24.00 19.22 21.96 30.00

67.5 0.91 25.35 35.00 16.88 33.40 30.00 19.71 20.48 27.00 18.00 19.39 25.00

70 0.89 26.23 35.00 16.27 34.30 27.00 20.98 21.26 29.00 20.07 21.27 26.00

75 0.89 26.17 35.00 15.64 33.41 31.00 19.03 20.39 28.00 16.72 19.56 31.00

80 0.89 25.45 35.00 15.87 35.77 31.00 18.72 21.24 31.00 16.60 18.92 28.00

100 0.77 25.68 35.00 13.98 33.35 32.00 16.25 20.03 35.00 18.34 18.66 37.00

DataNode 4 DataNode 5

Data

(GB) CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

65 13.08 20.55 12.00 17.66 16.12 12.00 1:32 0.163

67.5 11.88 19.66 12.00 27.54 18.66 15.00 1:30 0.167

70 13.45 19.86 14.00 18.26 17.06 12.00 1:34 0.171

75 13.75 20.38 14.00 28.35 16.00 16.00 1:35 0.174

80 14.92 19.12 16.00 30.95 16.49 17.00 1:38 0.181

100 10.98 17.80 20.00 27.75 16.23 22.00 2:13 0.235

 7-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2 DataNode 3

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD

65 1.94 26.33 35.00 15.66 32.77 26.00 14.52 21.31 22.00 16.88 20.06 22.00

67.5 1.95 27.13 35.00 11.96 32.75 24.00 14.32 21.22 21.00 16.51 19.75 21.00

70 0.88 25.83 35.00 13.50 32.64 27.00 13.96 19.89 24.00 16.65 20.28 23.00

75 0.86 26.49 35.00 12.11 32.75 26.00 16.47 20.56 26.00 15.51 18.68 24.00

80 0.80 27.39 35.00 14.60 31.23 32.00 15.07 20.31 25.00 14.22 18.63 22.00

94

DataNode 4 DataNode 5 DataNode 6

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

65 11.09 20.51 10.00 19.15 18.82 12.00 22.18 20.73 10.00 1:36 0.177

67.5 16.51 19.75 21.00 19.23 19.44 11.00 19.23 19.44 11.00 1:48 0.195

70 11.58 18.85 9.00 16.70 16.62 11.00 23.28 16.48 12.00 1:45 0.194

75 12.92 18.67 13.00 15.86 15.95 13.00 16.22 17.33 11.00 1:59 0.223

80 13.24 21.37 14.00 15.48 16.79 11.00 20.48 16.20 14.00 2:01 0.221

Sort workload characterization

 2-nodes Hadoop cluster

NameNode DataNode

Data

(GB) CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

25 2.14 24.06 11.00 23.64 28.57 25.00 1:01 0.045

35 3.45 24.68 16.00 27.53 27.05 39.00 1:05 0.047

40 2.25 24.75 35.00 24.00 23.28 48.00 1:29 0.062

45 3.50 24.99 29.00 23.85 26.13 53.00 1:30 0.070

55 3.57 25.25 29.00 22.50 25.94 57.00 1:53 0.088

60 2.42 24.99 29.00 22.15 26.90 60.00 2:05 0.087

62.5 2.48 25.55 29.00 21.65 26.66 61.00 2:13 0.092

65 2.49 25.09 29.00 21.09 28.56 74.00 2:22 0.102

 3-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

25 1.84 24.28 11.00 16.08 43.69 34.00 17.76 25.91 34.00 1:14 0.086

35 3.34 25.09 16 17.52 42.36 43 21.13 25.04 50 1:19 0.087

40 2.20 24.05 35 18.13 36.30 39 22.37 22.64 40 1:09 0.073

55 3.01 25.13 29 12.24 43.72 50 17.14 24.88 52 1:58 0.135

65 1.83 25.94 29 11.74 42.50 60.00 15.04 25.75 68.00 2:38 0.169

72.5 1.90 25.45 29 10.40 43.02 66.00 14.49 25.05 81.00 2:49 0.185

95

 4-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2 DataNode 3

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

40 1.53 24.24 35.00 14.84 35.75 42.00 17.87 21.00 41.00 17.83 20.97 40.00 1:16 0.103

65 1.94 25.34 35.00 12.51 35.09 62.00 15.58 21.41 63.00 15.64 19.49 62.00 2:01 0.163

67.5 2.02 24.84 38.00 12.63 33.96 65.00 14.74 21.91 65.00 14.62 19.85 64.00 2:09 0.171

70 2.04 24.77 38.00 13.35 32.90 66.00 14.54 20.16 67.00 15.49 19.57 67.00 2:11 0.174

72.5 2.27 24.58 38.00 13.60 33.85 69.00 14.57 20.98 70.00 15.98 19.74 69.00 2:06 0.171

 5-nodes Hadoop cluster

` NameNode DataNode 1 DataNode 2 DataNode 3

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD

40 1.23 24.12 38.00 17.23 34.91 37.00 20.81 21.65 32.00 19.42 20.66 29.00

65 2.13 23.97 38.00 13.15 32.61 52.00 15.03 22.26 49.00 16.29 21.42 46.00

70 2.19 24.66 38.00 14.38 34.04 49.00 15.80 21.68 54.00 15.90 19.31 51.00

72.5 2.11 24.52 38.00 13.47 34.88 50.00 13.83 20.67 55.00 13.88 19.73 53.00

75 2.18 25.14 35.00 12.10 34.11 60.00 13.53 20.07 56.00 14.58 18.92 52.00

DataNode 4

Data

(GB) CPU Mem HDD

Exec

Time

Total

Power

40 14.83 19.82 16.00 0:52 0.091

65 12.26 21.21 24.00 1:29 0.146

70 13.28 18.39 25.00 1:34 0.154

72.5 11.41 19.29 26.00 1:44 0.169

75 11.23 18.79 27.00 1:51 0.178

 6-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2 DataNode 3

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD

72.5 1.71 31.83 35.00 10.48 30.79 50.00 13.14 18.91 46.00 10.45 17.43 41.00

96

DataNode 4 DataNode 5

Data

(GB) CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

72.5 8.37 17.57 22.00 13.39 15.26 20.00 3:03 0.286

Wordcount workload characterization

 2-nodes Hadoop cluster

NameNode DataNode

Data

(GB) CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

20 2.16 23.21 17.00 77.63 31.54 11.00 1:05 0.063

22.5 2.01 23.51 18.00 75.33 29.82 13.00 1:14 0.070

25 2.08 23.67 41.00 76.32 25.50 14.00 1:21 0.077

27.5 2.05 23.35 19.00 76.80 27.30 15.00 1:28 0.084

30 2.02 23.47 21.00 77.90 28.96 16.00 1:35 0.101

 3-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

20 3.23 23.36 17.00 59.82 41.58 11.00 70.43 27.89 11.00 0:39 0.065

22.5 3.27 24.06 18.00 44.52 44.92 12.00 83.09 27.12 13.00 0:44 0.075

25 3.03 22.90 19.00 39.15 43.48 14.00 84.94 27.80 14.00 0:50 0.076

27.5 2.92 23.74 42.00 71.19 40.47 15.00 67.96 21.58 15.00 0:49 0.079

30 3.20 22.89 43.00 71.03 39.48 16.00 62.31 20.42 16.00 0:55 0.086

32.5 2.82 23.05 44.00 64.96 43.75 17.00 76.08 25.44 18.00 0:55 0.092

35 2.85 23.26 35.00 88.60 49.27 18.00 43.76 21.05 19.00 1:05 0.103

37.5 2.90 23.92 36.00 42.38 43.97 19.00 84.46 23.35 20.00 1:13 0.116

 4-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2 DataNode 3

97

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

22.5 4.35 23.84 45.00 33.90 28.04 13.00 33.18 17.15 14.00 36.49 18.11 13.00 0:58 0.096

25 3.90 23.22 41.00 73.20 36.21 14.00 39.41 24.08 14.00 56.77 20.20 14.00 0:37 0.076

27.5 3.80 22.89 42.00 34.76 40.55 15.00 59.94 21.12 15.00 78.02 22.36 15.00 0:40 0.085

30 3.77 23.84 43.00 63.86 44.01 16.00 34.70 20.07 16.00 76.26 22.09 16.00 0:43 0.089

32.5 3.86 23.58 34.00 81.43 48.30 17.00 64.99 21.68 18.00 39.51 21.27 17.00 0:44 0.095

35 4.01 23.32 35.00 62.83 43.98 18.00 58.27 20.76 19.00 58.97 21.49 18.00 0:46 0.099

37.5 4.10 24.09 36.00 70.60 48.04 19.00 58.90 20.55 20.00 65.20 20.19 19.00 0:47 0.104

 5-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2 DataNode 3

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD

22.5 4.67 23.81 45.00 33.63 30.29 11.00 23.62 17.58 11.00 14.06 15.46 11.00

25 4.66 23.95 46.00 22.35 27.13 11.00 33.10 18.01 11.00 24.57 18.29 11.00

30 3.48 24.08 48.00 25.15 25.91 13.00 36.94 17.48 14.00 28.93 17.61 12.00

37.5 3.62 23.22 52.00 25.32 25.86 15.00 19.33 16.77 17.00 34.64 16.73 15.00

DataNode 4

Data

(GB) CPU Mem HDD

Exec

Time

Total

Power

22.5 34.85 16.82 5.00 0:54 0.093

25 27.57 17.10 6.00 0:58 0.104

30 16.91 15.63 7.00 1:12 0.131

37.5 27.93 15.53 8.00 1:24 0.152

 6-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2 DataNode 3

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD

25 3.53 24.33 46.00 13.17 25.04 10.00 14.66 16.23 10.00 12.97 16.40 7.00

30 2.52 24.38 48.00 20.88 25.61 11.00 14.58 16.19 12.00 10.01 15.16 11.00

37.5 2.71 24.69 52.00 15.75 24.48 13.00 18.64 16.70 15.00 15.51 15.01 13.00

98

DataNode 4 DataNode 5

Data

(GB) CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

25 14.63 14.86 5.00 26.00 14.50 4.00 1:29 0.137

30 10.57 15.75 5.00 18.81 14.64 5.00 1:43 0.160

37.5 20.53 17.93 6.00 10.14 14.43 6.00 1:54 0.188

 7-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2 DataNode 3

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD

25 2.40 22.84 46.00 12.60 23.64 9.00 13.20 17.54 9.00 12.61 16.59 9.00

30 2.49 24.21 48.00 15.24 24.73 7.00 11.95 17.11 13.00 11.44 14.73 10.00

37.5 2.41 24.24 52.00 14.51 23.15 11.00 7.74 15.16 11.00 10.58 14.61 11.00

DataNode 4 DataNode 5 DataNode 6

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

25 8.88 14.12 4.00 9.61 14.26 4.00 9.61 14.12 4.00 1:34 0.157

30 16.17 14.92 5.00 8.33 14.19 4.00 7.26 14.19 4.00 1:47 0.179

37.5 15.54 14.56 7.00 7.77 14.21 4.00 11.01 14.51 5.00 2:16 0.225

Pagerank workload characterization

 2-nodes Hadoop cluster

NameNode DataNode

Data

(GB) CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

1 1.71 24.44 30.00 63.67 23.94 4.00 0:25 0.024

2.5 1.46 24.79 30.00 60.98 25.04 6.00 0:37 0.032

5 1.19 24.77 30.00 56.22 25.72 8.00 1:00 0.052

7.5 1.04 25.36 30.00 56.07 26.00 9.00 1:13 0.064

10 1.05 24.81 30.00 55.14 25.76 9.00 1:26 0.078

99

 3-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

1 2.80 23.94 30.00 54.39 43.13 4.00 78.82 23.59 4.00 0:13 0.019

2.5 2.38 24.90 30.00 56.46 42.99 4.00 73.69 26.54 7.00 0:18 0.031

5 1.95 25.40 30.00 48.08 44.39 5.00 75.98 24.65 7.00 0:29 0.044

7.5 1.74 24.94 30.00 48.08 42.73 6.00 75.47 24.87 10.00 0:35 0.057

10 1.51 24.78 30.00 70.43 42.05 7.00 52.02 27.26 7.00 0:41 0.068

 4-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2 DataNode 3

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

1 3.90 24.65 30.00 62.34 32.88 4.00 74.48 20.35 4.00 64.22 25.08 4.00 0:09 0.018

2.5 3.24 25.07 30.00 48.95 36.99 5.00 74.81 22.16 6.00 72.02 25.14 5.00 0:11 0.025

5 2.49 25.28 30.00 68.53 36.27 6.00 47.36 22.76 8.00 75.90 27.10 8.00 0:17 0.038

7.5 2.31 25.23 30.00 69.55 37.24 6.00 63.33 22.81 7.00 54.83 28.75 6.00 0:23 0.050

10 1.88 25.36 30.00 62.04 36.53 13.00 52.41 21.68 7.00 68.54 26.50 7.00 0:28 0.061

25 1.21 25.25 30.00 42.53 36.50 29.00 61.09 22.57 17.00 61.34 21.06 14.00 1:07 0.139

 5-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2 DataNode 3

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD

1 4.95 24.84 30.00 68.04 30.90 3.00 56.11 19.12 4.00 64.85 23.21 3.00

2.5 4.16 25.07 30.00 71.09 35.29 5.00 62.05 22.08 5.00 56.27 25.01 4.00

5 3.23 25.08 30.00 55.66 36.46 7.00 57.75 20.93 7.00 66.76 26.45 4.00

7.5 2.85 24.37 30.00 67.78 35.27 6.00 51.94 21.67 8.00 51.73 21.23 5.00

10 2.41 24.85 30.00 64.43 37.18 11.00 50.48 23.15 7.00 53.77 21.27 5.00

25 1.56 24.95 30.00 45.32 34.71 22.00 59.33 23.28 11.00 64.10 22.04 11.00

35 2.62 24.84 35.00 40.92 34.48 29.00 58.68 23.24 16.00 53.22 20.19 15.00

DataNode 4

100

Data

(GB) CPU Mem HDD

Exec

Time

Total

Power

1 60.41 18.68 1.00 0:07 0.018

2.5 57.48 20.28 1.00 0:08 0.023

5 66.71 22.15 2.00 0:12 0.032

7.5 59.20 20.23 2.00 0:17 0.045

10 58.28 20.85 2.00 0:21 0.056

25 45.79 21.51 5.00 0:48 0.125

35 43.89 19.78 7.00 1:10 0.177

 6-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2 DataNode 3

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD

1 5.37 25.27 35.00 51.00 29.18 4.00 43.01 18.73 4.00 45.64 18.48 3.00

2.5 3.66 25.49 35.00 45.46 33.81 5.00 43.16 19.96 5.00 46.35 19.63 5.00

5 2.64 25.72 35.00 40.47 36.22 6.00 45.35 22.40 6.00 44.63 20.80 6.00

10 1.87 24.93 35.00 35.80 35.28 6.00 41.84 22.40 7.00 36.31 21.97 6.00

25 1.30 26.06 35.00 38.25 36.50 12.00 38.90 20.64 10.00 42.09 20.13 9.00

35 2.42 24.16 35.00 33.94 32.45 17.00 35.72 19.30 14.00 33.31 18.88 13.00

DataNode 4 DataNode 5

Data

(GB) CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

1 52.39 17.77 1.00 44.72 15.68 1.00 0:06 0.014

2.5 40.37 18.22 2.00 30.75 16.74 2.00 0:10 0.026

5 34.31 20.26 2.00 23.40 17.08 2.00 0:17 0.041

10 32.27 19.39 2.00 27.36 17.47 2.00 0:31 0.070

25 29.32 19.20 5.00 26.59 16.59 4.00 1:05 0.148

35 26.15 18.60 6.00 30.14 16.98 5.00 1:39 0.213

 7-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2 DataNode 3

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD

1 6.90 25.21 35.00 46.85 32.05 4.00 47.22 19.37 4.00 47.10 17.30 3.00

2.5 4.73 25.93 35.00 36.01 31.59 5.00 34.12 20.09 5.00 42.15 18.12 4.00

101

25 2.14 25.65 35.00 19.22 32.40 16.00 27.55 19.44 18.00 28.03 19.12 9.00

35 2.30 25.35 35.00 26.20 33.35 15.00 32.08 20.97 17.00 25.87 19.83 11.00

DataNode 4 DataNode 5 DataNode 6

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

1 44.06 17.19 1.00 37.23 15.49 1.00 38.56 16.28 1.00 0:05 0.015

2.5 33.33 17.72 2.00 28.35 16.49 2.00 30.93 15.68 1.00 0:11 0.028

25 16.73 17.75 4.00 23.93 16.77 3.00 27.46 15.98 4.00 1:30 0.191

35 20.75 18.29 5.00 22.39 16.24 5.00 24.16 15.93 1.00 1:58 0.257

Kmeans workload characterization

 2-nodes Hadoop cluster

NameNode DataNode

Data

(GB) CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

1 1.89 24.73 30.00 71.88 26.92 8.00 0:18 0.018

2.5 1.27 27.55 30.00 78.27 25.03 9.00 0:42 0.042

5 1.31 24.65 30.00 81.11 24.55 8.00 0:38 0.036

7.5 1.11 25.24 30.00 79.51 24.67 10.00 0:56 0.055

10 0.99 25.57 30.00 83.73 24.75 12.00 1:15 0.076

22.5 1.48 30.9 8.00 84.56 28.65 24.00 3:43 0.239

 3-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

1 2.62 24.75 30.00 47.19 35.54 8.00 56.98 23.87 8.00 0:12 0.018

2.5 1.78 24.99 30.00 68.81 38.07 9.00 66.66 26.28 9.00 0:26 0.039

5 1.91 25.13 30.00 72.08 43.46 8.00 70.61 23.12 8.00 0:22 0.036

7.5 1.51 25.69 30.00 78.14 39.98 10.00 65.38 28.06 10.00 0:36 0.054

10 1.43 25.77 30.00 61.24 48.63 12.00 77.61 29.42 12.00 0:48 0.075

12.5 2.15 25.76 30.00 79.79 40.69 15.00 71.24 24.39 16.00 1:03 0.104

15 2.07 25.96 30.00 74.94 41.49 17.00 79.48 22.2 18.00 1:15 0.128

102

17.5 1.01 26.26 30.00 91.19 50.79 19.00 57.92 27.82 20.00 1:38 0.160

20 0.86 26.58 30.00 85.20 50.13 21.00 65.62 27.9 22.00 1:53 0.187

22.5 2.26 38.87 8.00 85.09 50.37 24.00 70.93 29.13 24.00 2:06 0.222

 4-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2 DataNode 3

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

1 2.94 26.10 30.00 44.28 37.70 8.00 60.78 23.05 8.00 41.73 20.69 8.00 0:11 0.022

2.5 1.98 27.64 30.00 57.87 47.60 9.00 57.32 22.53 9.00 65.12 23.51 9.00 0:21 0.043

5 2.25 25.32 30.00 62.15 47.65 8.00 61.65 23.25 8.00 69.35 23.84 8.00 0:17 0.036

7.5 1.83 25.54 30.00 69.14 49.40 10.00 59.98 22.88 11.00 68.47 22.45 10.00 0:26 0.057

10 1.55 25.80 30.00 67.70 47.78 12.00 66.68 23.69 12.00 65.37 22.25 12.00 0:35 0.078

12.5 2.40 26.06 30.00 61.54 41.29 15.00 79.55 25.22 16.00 72.62 23.60 15.00 0:46 0.105

15 1.19 26.39 30.00 69.08 39.34 17.00 73.19 23.10 18.00 74.07 20.91 17.00 0:55 0.127

17.5 1.10 25.96 30.00 72.64 50.51 19.00 69.83 27.85 20.00 71.03 22.33 19.00 1:09 0.157

20 1.06 26.87 30.00 73.44 49.63 22.00 75.60 27.66 22.00 78.12 23.90 22.00 1:18 0.182

22.5 1.32 36.86 30.00 74.27 50.29 24.00 66.26 27.29 24.00 71.98 23.52 24.00 1:37 0.218

 5-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2 DataNode 3

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD

1 3.41 25.83 30.00 54.61 36.43 7.00 44.17 20.90 7.00 54.61 21.87 7.00

2.5 2.52 25.02 30.00 55.81 35.81 7.00 62.32 26.05 8.00 64.02 23.43 8.00

5 2.58 25.28 30.00 66.59 38.82 8.00 57.39 21.50 7.00 60.54 21.37 6.00

7.5 2.42 25.45 30.00 63.21 38.21 8.00 67.33 25.96 9.00 61.60 22.44 7.00

10 1.93 25.78 30.00 63.89 39.27 10.00 65.97 23.39 9.00 69.30 23.50 11.00

12.5 2.72 25.80 30.00 72.05 39.35 12.00 65.21 23.54 13.00 68.46 22.03 12.00

15 1.56 25.99 30.00 66.60 41.31 14.00 70.93 24.25 13.00 70.35 22.73 13.00

17.5 1.35 26.16 30.00 66.90 38.82 16.00 69.92 23.83 16.00 69.08 22.47 15.00

20 1.76 37.55 30.00 64.20 49.03 17.00 70.55 27.48 17.00 71.29 25.16 16.00

22.5 2.45 33.90 30.00 62.93 45.91 19.00 73.76 29.45 20.00 72.19 25.64 17.00

103

25 1.12 26.47 30.00 80.04 41.12 21.00 69.72 23.17 21.00 74.16 21.70 20.00

DataNode 4

Data

(GB) CPU Mem HDD

Exec

Time

Total

Power

1 39.20 18.80 3.00 0:09 0.022

2.5 51.81 21.85 3.00 0:16 0.038

5 55.38 23.36 3.00 0:15 0.038

7.5 58.12 23.47 4.00 0:19 0.049

10 53.00 21.96 4.00 0:27 0.068

12.5 72.19 22.55 5.00 0:34 0.094

15 69.93 22.17 7.00 0:41 0.113

17.5 69.96 21.64 7.00 0:50 0.139

20 67.87 27.76 8.00 0:59 0.179

22.5 65.08 26.24 8.00 1:09 0.208

25 73.78 21.66 10.00 1:18 0.224

 6-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2 DataNode 3

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD

1 2.15 25.09 35.00 24.58 31.70 7.00 26.71 19.40 7.00 8.62 15.51 6.00

2.5 2.18 25.60 35.00 40.16 32.36 7.00 42.70 22.11 9.00 29.18 19.50 7.00

5 1.79 27.92 35.00 33.90 30.87 6.00 29.22 18.79 8.00 17.51 16.84 5.00

7.5 1.95 25.77 35.00 38.56 36.05 8.00 32.19 19.97 9.00 31.32 18.25 8.00

10 1.63 24.99 35.00 41.22 34.49 9.00 44.35 20.87 12.00 40.06 21.36 9.00

12.5 1.47 26.28 35.00 47.48 36.04 11.00 44.92 21.21 12.00 43.97 22.70 11.00

15 1.29 25.71 35.00 41.68 33.76 12.00 46.95 21.34 13.00 50.12 21.22 11.00

17.5 1.29 26.10 35.00 49.13 33.40 13.00 53.35 23.62 14.00 53.83 21.44 13.00

20 1.28 26.53 35.00 52.04 36.09 13.00 54.85 21.67 15.00 55.59 20.27 16.00

22.5 1.26 27.23 35.00 60.06 36.35 17.00 54.25 23.37 17.00 62.70 22.51 16.00

25 1.17 27.21 35.00 53.30 36.31 18.00 66.22 22.35 20.00 59.12 21.10 16.00

DataNode 4 DataNode 5

Data

(GB) CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

1 20.76 16.31 3.00 20.20 15.15 2.00 0:18 0.032

2.5 31.64 19.76 4.00 32.12 15.89 2.00 0:23 0.051

5 33.67 18.83 3.00 28.58 16.34 3.00 0:26 0.051

104

7.5 38.41 19.24 4.00 26.31 16.23 3.00 0:25 0.052

10 36.20 18.57 5.00 35.00 16.65 4.00 0:36 0.083

12.5 36.29 19.00 5.00 38.21 16.69 5.00 0:49 0.116

15 38.91 19.49 5.00 41.60 16.34 6.00 0:58 0.140

17.5 47.56 19.95 7.00 46.78 17.66 6.00 0:58 0.147

20 50.79 20.82 7.00 48.16 17.07 6.00 1:04 0.168

22.5 53.84 21.41 7.00 48.99 17.18 7.00 1:10 0.190

25 53.52 20.81 8.00 52.67 17.10 8.00 1:24 0.229

 7-nodes Hadoop cluster

NameNode DataNode 1 DataNode 2 DataNode 3

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD CPU Mem HDD

1 2.91 25.69 35.00 28.92 30.91 7.00 21.96 18.26 7.00 16.66 17.82 6.00

5 2.92 25.81 35.00 22.42 27.11 6.00 27.12 18.40 7.00 23.11 17.94 5.00

22.5 1.23 26.46 35.00 47.92 34.26 13.00 50.18 22.00 14.00 45.10 21.10 13.00

DataNode 4 DataNode 5 DataNode 6

Data

(GB) CPU Mem HDD CPU Mem HDD CPU Mem HDD

Exec

Time

Total

Power

1 14.97 19.26 3.00 18.46 16.63 2.00 17.14 15.25 2.00 0:27 0.054

5 17.77 17.08 3.00 19.42 15.81 2.00 38.90 17.20 3.00 0:28 0.060

22.5 43.89 19.38 7.00 43.42 16.67 7.00 44.05 18.44 5.00 1:18 0.207

	Improving Energy-Efficiency through Smart Data Placement in Hadoop Clusters
	Recommended Citation

	Improving Energy-Efficiency through Smart Data Placement in Hadoop Clusters

