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ABSTRACT 

Minimal surfaces are a special subset of surfaces that have gone through a long and extensive 

development and have also led to many fruitful findings in mathematics. Several periods that are 

key to the progression of the theory are coined as Golden Ages for the field’s development. Here, 

a historical and mathematical development of minimal surface theory is presented that spans 

from its inception in the late 18th century to the present day. Along with the development, there is 

an emphasis on showing connections of minimal surfaces to various natural phenomena that 

occur such as soap films, black holes, biological systems, etc. Lastly, it is discussed briefly 

where the field is currently and where its future lies beyond. 
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A Mathematical Development of Minimal Surface 
Theory: From Soap Films to Black Holes 

Timothy Pitts 

May 10, 2020 

Introduction 

Minimal surface theory is a sub-branch of mathematics that has been in 
development for over two centuries. Through its inception, it has incorporated 
many broader branches of mathematics such as the calculus of variations, com-
plex analysis, differential geometry, and mathematical physics. Minimal surfaces 
are a special subset of surfaces that can be described using several different but 
equivalent definitions, and they have their roots dating back to the late 17th 
century with the development of the calculus of variations by Joseph Louis La-
grange and Leonhard Euler. Since the development of the field, minimal surfaces 
have proven to be applicable to many disciplines such as materials engineering, 
architecture, physics, computer graphics, and biology as well as many others. 
More importantly, through the analysis of minimal surfaces, mathematicians 
have been able to formulate more precise notions of what is meant by con-
cepts such as shape, curvature, and spatial relations. William H. Meeks III and 
Joaquin Perez describe their perspective on the formulation of minimal surface 
theory as progressing through several Golden Ages of development spanning 
from the early 19th century to the end of the 20th century, and they even claim 
that such a Golden Age is being witnessed currently as of the 1980s [23]. They 
coined the term Classical Minimal Surface Theory which primarily discusses 
minimal surfaces that are connected, orientable, complete, and embedded in 
R3 with a finite genus. In contrast, the Modern Theory explores surfaces in 
higher dimensional manifolds of a more complex nature. This thesis primarily 
addresses Meeks and Perez’s perspective of the development of minimal sur-
face theory while constructing a unique interpretation of the mathematical and 
historical progression of the theory. Throughout the development, there is a dis-
cussion of minimal surface applications in other disciplines and where research 
can progress in the field. 
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2 Overview of Minimal Surface Theory 

The theory of minimal surfaces can be further divided into two separate 
developments: classical minimal surface theory and modern minimal surface 
theory. Classical theory refers to the study of surfaces that are connected, 
orientable, complete, embedded minimal surfaces in R3 with a finite genus. 
Classical surfaces do not deal with singularities, where points either blow up to 
infinity or do not exist, and they also do not address surfaces that self intersect. 
There are however a few surfaces that will be seen later that do indeed allow 
for self intersections. In Meeks and Perez’s brief survey of classical minimal 
surface theory, they mostly referenced work that built up to their solution of 
the problem that the plane, the helicoid, the catenoid, and the one-parameter 
family {Rt}t∈(0,1) of Riemann minimal examples are the only complete, properly 
embedded, minimal planar domains in R3 . There will not be much emphasis 
on their particular problem above, but the theory in general will be explored. 
The first minimal surfaces known at the beginning of the theory were the plane, 
catenoid, and helicoid. The next section provides a visualization of the first 
three minimal surfaces known before the work of Heinrich Scherk in the 1800s. 

2.1 Classical Surface Examples 

• The Plane: This surface resembles a flat sheet of paper. An example is 
the ordinary coordinate plane. 

• The Catenoid: The only minimal surface of revolution. It is formed by 
rotating the curve known as the catenary about a central axis. 
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• The Helicoid: The only ruled minimal surface. A Ruled surface is one 
which can be constructed entirely out of straight lines. 

As stated before, Meeks and Perez noted that classical minimal surface the-
ory has gone through several Golden Ages of development, and they specify 
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three main periods. The first period is roughly between the years 1850-1890. 
This period is highlighted with work from Enneper, Weierstrass, Scherk, Rie-
mann, and Gauss and is primarily motivated by the formulation of complex 
variables and analysis. Also at this time, the Belgian physicist Joseph Plateau 
experimented with soap films to study their physical nature and their connection 
to mathematical surfaces. Then, around 1930-1950, there is another expansion 
of the theory. According to Robert Osserman, this period sought to expand on 
minimal surface problems related to partial differential equations and Joseph 
Plateau’s problem for soap films [19]. The third and most recent period is ar-
gued to have started in the 1980s, and is when Modern Minimal Surface Theory 
begins to develop with use of mathematical fields such as geometric measure 
theory, manifolds and submanifolds, and non-parametric minimal surfaces. The 
three periods are used as a foundation for the literature related to the develop-
ment of minimal surface theory. The review of the literature emphasizes each 
work’s contribution to the overall significance to the mathematics of physical 
models, like soap films, and why the results are crucial for applications in other 
research areas. 

2.2 The Calculus of Variations: 1690-1780 

Before the first Golden Age in the 1800s, several Bernoulli relatives, Euler, 
and Lagrange developed an essential field called the calculus of variations. This 
new calculus, which developed shortly after ordinary calculus, helped pave the 
way for understanding the nature of shape for curves and surfaces. The study 
of variational calculus reveals how nature optimizes itself in a geometrical sense, 
with curves and surfaces, as well as in a physical sense with energy and motion. 

To demonstrate how the calculus of variations quantifies the optimization 
of nature, consider the following problem. The first problem that fueled the 
creation of variational calculus was known as the Brachistochrone Problem. 
The problem asks to find a curve, that is only under the influence of gravity, 
and allows an object to travel from the highest point to the lowest point in the 
least amount of time. The answer was found to be part of a cycloid, and it was 
solved independently by several notable figures. For solutions, refer to [20]. A 
cycloid is a path traced out by a point on the edge of a circle as the circle is 
rolling with constant speed. It may seem arbitrary how a the cycloidal path of 
a rolling circle answers the Brachistochrone problem, but there is a simple way 
to connect the ideas. 

The connection is Snell’s Law. Discovered in 1621 by Willebrord Snell [6], 
the law states that as light passes through a boundary from one medium to 
another it is refracted according to the refractive indices of each medium. The 
relationship is described as 
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sin(θ1) v1 
= . 

sin(θ2) v2 

Where θ1 and θ2 are the angles of incidence to the perpendicular line drawn 
at the point of contact of the boundary, and v1 and v2 are the speeds that light 
travels through the different substance mediums. Johann Bernoulli’s solution in 
1696 of the Brachistochrone problem used Snell’s law by taking several refrac-
tive prisms and stacking them in layers [20]. After stacking several against one 
other, the light beam kept refracting through each prism causing the path of the 
light to curve. After enough prisms, the beam’s path began to approach what 
is now known as the Brachistochrone. Therefore, nature displays paths that 
are solutions to mathematical problems according to its own laws. Most impor-
tantly, the essential idea of the calculus of variations is to formulate how certain 
quantities are demanded to be optimized by nature. In the Brachistochrone 
problem, the desire is to get from one point to another in the shortest amount 
of time, thus time needs to be minimized. Overall, the calculus of variations 
attempts to find certain curves, surfaces, or paths that maximize or minimize 
some functional using calculus operations; namely through the use of integrals. 
The maximization and minimization of these integrals is more commonly known 
as extremizing an integral, and the point at which a functional is extremized 
it is called stationary. The Euler-Lagrange equations were formulated based on 
this idea of optimization to assist in finding solutions that would extremize a 
functional when it is stationary. This is almost similar to finding maximums 
and minimums of functions using a derivative of a function and setting it equal 
to zero. For surfaces, the optimization of area functionals that are desired to be 
extremized lead to a few definitions for a minimal surface. According to Meeks 
and Perez [23]: 

Definition 2.2.1: A surface M ⊂ R3 , is minimal if and only if it is a critical 
point of the area functional for all compactly supported variations. 

Definition 2.2.2: A surface M ⊂ R3 , is minimal if and only if every point 
p ⊂ M has a neighborhood with least-area relative to its boundary. 

Both of these definitions for a minimal surface are equivalent and are derived 
from the work accomplished by Euler and Lagrange. Note in Definition 2.2.2, 
a surface is minimal if it locally minimizes its area and creates a least-area 
neighborhood for every point relative to the surface’s boundary. Thus, global 
area minimization for a surface is not a necessary condition for minimal surfaces 
but nearly a result for some minimal surfaces. Euler and Lagrange derived the 
previous definitions by finding necessary conditions for minimal surfaces. 

2.3 Conditions for Minimal Surfaces: 

Euler-Lagrange Equations: Let J denote a functional for the surface areaR R p
that is to be extremized. The surface area functional is J = 1 + f2 + f2dudv,u v 
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and if it is to be extremized then the Euler-Lagrange equations must hold at 
some stationary point. The Euler-Lagrange equation for two independent vari-
ables is as follows: � � � � 

∂f ∂ ∂f ∂ ∂f − − = 0 
∂x ∂t ∂xt ∂s ∂xs 

Also, if we take a mapping x(u, v) = (u, v, f(u, v)), then J can be used further 
to derive a special partial differential equation (PDE). Here is the derivation 
from [10]. p p ! p ! 

∂ 1 + f2 + f2 ∂ ∂( 1 + f2 + f2 ∂ ∂( 1 + f2 + f2 
u v u v u v0 = − − 

∂f ∂u ∂fu ∂v ∂fv ! ! 
∂ fu ∂ fv 

= 0 − p − p
∂u 1 + f2 + f2 ∂v 1 + f2 + f2 

u v u v 

fuu(1 + fu 
2 + fv 

2) − fu(fufuu + fvfuv) 
= 

(1 + f2 + f2)3/2 
u v 

fvv(1 + fu 
2 + fv 

2) − fv(fufuv + fv fvv)
+ 

(1 + f2 + f2)3/2 
u v 

fuu(1 + f2) − 2fufvfuv + fvv(1 + f2)v u = . 
(1 + f2 + f2)3/2 

u v 

Since the left hand side of the equation is 0, then this leaves the numerator 
as equalling to 0 to satisfy this condition. Hence, The area functional reduces 
down to a single equation in terms of f according to the formula 

fuu(1 + fv 
2) − 2fufv fuv + fvv(1 + fu 

2) = 0 . 

The equation is commonly called the minimal surface equation, and its solu-
tions are various f functions that make the equation true. The solutions to this 
equations are not easy to calculate, but it is a necessary condition for the surface 
itself if it is minimal. Thus, checking if a surface satisfies this condition can fur-
ther verify if the surface is indeed minimal. The equation above indicates that 
this must hold true for minimal surfaces at every point on a surface. Another 
definition for a minimal surface can be formed from the necessary condition. 

Definition: A surface M ⊂ R3 , is minimal if and only if its mean curvature 
vanishes identically [11]. 

For further information on mean curvature, see section 3.2. The partial dif-
ferential equation was found to be equivalent to the vanishing of mean curvature 
by Meusnier in 1776. The surfaces noted before, namely the plane, catenoid, and 
helicoid all satisfy this condition, and so do minimal surfaces found in the later 
centuries. With the results by Euler and Lagrange, two other mathematicians 
during this period contributed a very useful tool for minimal surface theory. 

Gaspard Monge and Adrien-Marie Legendre, derived the Monge-Legendre 
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representations for a minimal surface based on the use of complex analysis. 
This representation uses the following formulas [11]: 

x = φ0(a) + ψ0(b) 

y = φ(a) − aφ0(a) + ψ(b) − bψ0(b)Z �p � Z �p � 
z = −1 − a2 φ00(a)da + −1 − b2 ψ00(b)db. 

These formulas involved the use of two complex functions, φ and ψ, that 
are special functions in complex analysis. Their special property is that they 
are analytic functions of a and b. The reason why these functions are special 
is discussed later with the Weierstrass-Enneper representations. At the time, 
these representation equations were virtually useless because complex analysis 
was not well understood in a real geometric sense or in general because the field 
was very new and still being theorized. Though the representations were not 
able to be used efficiently, they allow minimal surfaces to be represented with 
the use of complex functions thus connecting the two fields to each other. The 
connection of these two fields is primarily what drives the first age of minimal 
surface theory. 

The 1st Golden Age: 1850-1890 

The first expansion of minimal surface theory came about in the study of 
differential geometry and complex variable analysis. The most notable advances 
were the formulation of geometry of curves and surfaces, study of soap films, 
and Enneper-Weierstrass representations for minimal surfaces. 

The two fields that influenced much of minimal surface theory during this 
time period were Differential geometry and Complex Analysis. Differential ge-
ometry explores the quantification of curvature for surfaces in traditional Eu-
clidean spaces as well as non-traditional geometries such as hyperbolic spaces. 
Here, in differential geometry, calculus is used to formulate spatial relations 
for surfaces and shapes. Complex analysis on the other provides a connection 
to minimal surfaces through its use of analytic and harmonic functions. Com-
plex analysis is also constructed further during the 1800s allowing for notable 
contributions to minimal surface theory. It is necessary to discuss differential 
geometry and complex analysis in further detail to show how they contribute 
to the theory of minimal surfaces. 
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3.1 Surfaces in R3 

Differential geometry describes the spatial mathematics of minimal surfaces, 
so mathematicians developed ways to describe or represent surfaces in a coor-
dinate space. Many surfaces and curves are complex and cannot be described 
easily or understood with the traditional coordinate plane mappings or repre-
sentations such as y = f(x) and z = f(x, y). Instead, curves and surfaces will be 
need to be re-written as parametrizations. A surface in R3 is, to begin with, a 
subset of R3 , that is, a certain collection of points of R3 . Of course, not all sub-
sets are surfaces, but we must certainly require that a surfaces must be smooth 
and two-dimensional. These requirements will be expressed in mathematical 
terms in the following paragraphs. 

Let x : D → R3 be a differentiable mapping of an open set D of R2 into 
R3 . The domain D will usually be an open disk or an open rectangle. If 
(u, v) ∈ D, then x(u, v) = (x1(u, v), x2(u, v), x3(u, v)). This mapping is called 
a parametrization or a coordinate patch and the xi(u, v) are called component 
functions of x. Under certain conditions we describe below, the image x(D) of a 
coordinate patch x, that is the set of all values of x, is a smooth two-dimensional 
subset of R3 . The following figure illustrates the idea. 

Let x : D → R3 be a coordinate patch. Holding u or v constant in the 
function (u, v) → x(u, v) produces curves. Explicitly, for each point (u0, v0) in 
D the curve 

u → x(u, v0) 

is called the u-parameter curve, v = v0, of x; and the curve 

v → x(u0, v) 

is called the v-parameter curve, u = u0. The figure shows what these curves 
look like in general. 
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Thus, the image x(D) is covered by these two families of curves, which are the 
images under x of the horizontal and vertical lines in D, and one curve from each 
family goes through each point of x(D). The tangent vectors for the u-parameter 
and v-parameter curves are given by differentiating the component functions of 
x(u, v) with respect to u and v respectively. At the point (u0, v0) ∈ D, we have 

� � � � 
∂x1 ∂x2 ∂x3 ∂x1 ∂x2 ∂x3 

xu(u0, v0) = , , xv(u0, v0) = , ,
∂u ∂u ∂u (u0,v0) ∂v ∂v ∂v (u0.v0) 

These tangent vectors or velocity vectors of the parameter curves are illustrated 
in the following figure. 

Of course, to obtain true coordinates on a surface, we need two properties: first, 
x(u, v) must be one-to-one (although we can relax this condition slightly to allow 
for certain self-intersections of a surface); secondly, x(u, v) must never have xu 

and xv in the same direction because this destroys 2-dimensionality. That is, 
we need these velocity vectors to be linearly independent. When these two 
conditions are satisfied, we may say that the coordinate patch x(u, v) is regular. 
In order to avoid certain technical difficulties, we must use proper patches, those 
for which the inverse of x : x(D) → D is continuous (that is, has continuous 
coordinate functions). If we think of D as a thin sheet of rubber, then x(D) is 
created by bending and stretching D in a not too violent fashion. 

To construct a suitable definition of a surface we start from the rough idea that 
any small enough region in a surface M resembles a region in the plane R2 . The 
discussion above shows that this can be stated somewhat more precisely as, near 
each of its points, M can be expressed as the image of a proper patch. (When 
the image of the patch x is contained in M , we say that x is a patch in M). To 
get the final form of the definition, it remains only to define a neighborhood N 
of p in M to consist of all points of M whose Euclidean distance from p is less 
than some number � > 0. 
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Definition: A surface in R3 is a subset M of R3 such that for each point p of 
M there exists a proper patch in M whose image contains a neighborhood of p 
in M . 

Example: Let us show that the unit sphere 

S2 2 2 2= {(x, y, z) ∈ R3|x + y + z = 1} 

is a surface. 

We will construct the unit sphere with six proper patches without going into 
details. The patches, x+1, x−1, x+2, x−2, x+3, x−3 are given by 

p 
x±1(u, v) = (u, v, ± 1 − u2 − v2) p 
x±2(u, v) = (u, ± 1 − u2 − v2, v) p 
x±3(u, v) = (± 1 − u2 − v2, u, v) 

2 2Where (u, v) ∈ D = {(u, v) ∈ R2|u + v < 1}. On this open region D,√ 
the function 1 − u2 − v2 is continuous and has partial derivatives. It is clear 
that each patch is one and that their inverses are the projections onto the xy-

−1plane, xz -plane, and yz -plane, respectively. For instance, x : S2 → D with±1 
−1 x±1(x, y, z) = (x, y). This inverse is continuous because of the restriction to 
S2 of the continuous projection π(x, y, z) = (x, y) from R3 onto R2 . A similar 
argument applies in the other cases. The figure suggests that the unit sphere 
is obtained by patching together the six images of the proper patches defined 
above. 
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3.1.1 Tangent Vectors and Tangent Space 

Let M be a surface and let I denote some interval in R. If α : I → x(D) ⊆ M 
is a smooth curve in R3 which is contained in the image of a parametrization x 
on M , then there exists unique smooth functions u(t), v(t) : I → R such that 
α(t) = x(u(t), v(t)). 

To see this let (u(t), v(t)) = x−1α(t), hence, α(t) = x(x−1α(t)) = x(u(t), v(t)). 

These functions u(t), v(t) are called the coordinate functions of the curve α with 
respect to the patch x. 

It is intuitively clear what it means for a vector to be tangent to a surface M in 
R3 . A formal definition can be based on the idea that a curve in M must have 
all its velocity vectors tangent to M . 

Definition: Let p be a point on a surface M in R3 . A vector v in R3 at the 
point p is tangent to M at p provided v is a velocity vector of some curve in 
M . 

The set of all tangent vectors to M at p is called the tangent plane of M at 
p and is denoted by Tp(M). The following result shows, in particular, that at 
each point p of M the tangent plane Tp(M) is actually a 2-dimensional vector 
subspace of the tangent space Tp(R3). 

Let p be a point of a surface M in R3 , and let x be a patch in M such that 
x(u0, v0) = p. A tangent vector v to R3 at p is tangent to M if and only if 
v can be written as a linear combination of xu(u0, v0) and xv (u0, v0). Since 
partial velocities are always linearly independent, we deduce that they provided 
a basis for the tangent plane of M at each point of x(D). 

The proof of this is as follows. First, note that the parameter curves of x are 
curves in M , so xu and xv are always tangent to M at p. Now suppose that 
v is tangent to M at p; thus, there is a curve α in M such that α(0) = p and 
α0(0) = v. Since α may be written as α(t) = x(u(t), v(t)), by the chain rule we 
have 

α0(t) = xu(u(t), v(t))u
0(t) + xv(u(t), v(t))v

0(t) . 

Since α(0) = p = x(u0, v0) we have (u(0), v(0)) = (u0, v0). Hence at t = 0 we 
have 
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v = α0(0) = xu(u0, v0)u
0(0) + xv (u0, v0)v

0(0) . 

Conversely, suppose that a tangent vector v to R3 can be written as 

v = c1xu(u0, v0) + c2xv(u0, v0) 

By computations as above, v is the velocity vector at t = 0 of the curve α(t) = 
x(u0 + tc1, v0 + tc2). 

A reasonable deduction, based on the general properties of derivatives, is that 
the tangent plane TP (M) is the linear approximation of the surface M near p. 

Definition: A Euclidean vector field Z on a surface M in R3 is a function that 
assigns to each point p of M a vector Z(p) in R3 at p. 

A Euclidean vector field V for which each vector V (p) is tangent to M at p is 
called a tangent vector field on M (see figure below). Frequently these vector 
fields are defined, not on all of M , but only on some region in M . As usual, 
we always assume differentiability. A Euclidean vector z at a point p of M is 
normal to M if it is orthogonal to the tangent plane TP (M), that is, to every 
tangent vector to M at p, and a Euclidean vector field Z on M is a normal 
vector field on M provided each vector Z(p) is normal to M . 

3.1.2 The Shape Operator of M ⊂ R3 

Suppose that Z is a Euclidean vector field on a surface M in R3 . Let α be a 
curve in M with α(0) = p and initial velocity α0(0) = v. Then, we define the 
covariant derivative of the vector field Z in the direction of v at the point p, 
denoted by rvZ, by 

drvZ = Z(α(t))|t=0 .dt P 
That is, rvZ is the rate of change of Z in the v direction at p. If Z = i ziEi, 
where {E1, E2, E3} is the natural frame field of R3 , then P 

Z(α(t)) = i zi(α(t))Ei 

and 

rvZ = d Z(α(t))|t=0 = 
P 

(zi ◦ α)0(0)Ei .dt i 
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We now consider a specific vector field on M , namely, a unit normal vector field 
U on M . If x : D → R3 is a coordinate patch, then we can always construct 
such a field U on x(D) by letting 

xu × xv
U = . 

||xu × xv|| 
We are now in a position to find the mathematical measurement of the shape 
of a surface in R3 . 

Definition: If p is a point on M , then for each tangent vector v to M at p, 
let 

Sp(v) = −rvU , 

where U is a unit normal vector field on a neighborhood of p in M . Sp is called 
the shape operator of M at p derived from U . The figure illustrates the concept. 

The tangent plane of M at any point q consists of all Euclidean vectors or-
thogonal to U(q). Thus, the rate of change rvU of U in the v direction tells 
how the tangent planes of M are varying in the v direction, and this gives an 
infinitesimal description of the way M itself is curving in R3 . 

An important observation about the shape operator is the following. For each 
point p of the surface M , the shape operator is a linear operator 

Sp : Tp(M) → Tp(M) 

on the tangent plane of M at p. Moreover, the shape operator is a symmetric 
operator with respect to the usual dot product of vectors in R3 . That is, 

Sp(v) · w = v · Sp(w) 

for any pair of tangent vectors v and w to M at p. 

3.2 Curvature 

Using the parametrizations of curves and surfaces, there is now the concept of 
defining what exactly curvature is and how it can be described mathematically. 
Most people have an intuitive notion of what curvature is, but the essential 
problem is formulating it. There are several types of curvature that are used 
within the study of minimal surfaces or surfaces in general. 
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3.2.1 The Normal Curvature 

Throughout this section we will work in a region of a surface M that has 
been oriented by the choice of a unit normal vector field U , and we use the 
shape operator S derived from U . The shape of a surface in R3 influences the 
shape of the curves in M . 

Lemma If α is a curve in M , then 

α00 · U = S(α0) · α0 

Proof Since α is in M , its velocity α0 is always tangent to M . Thus, α0 ·U(α) = 
0. Differentiating this with respect to t, we get 

α00 · U(α) + α · (U(α))0 = 0 

But S(α0) = −(U(α))0 , hence the result. 

Geometric interpretation: at each point, α00 · U is the component of the 
acceleration α00 normal to the surface M (see figure below). The lemma shows 
that this component depends only on the velocity α0 and the shape operator 
of M . Thus, all curves in M with a given velocity vector v at point p will 
have the same normal component of acceleration at p, namely, Sp(v) · v. This 
is the component of acceleration that the bending of M in R3 forces them to 
have. Thus, if v is standardized by reducing it to a unit vector u, we get a 
measurement of the way M is bent in the u direction. 

Definition: Let u be a unit vector tangent to M at a point p. Then the number 
k(u) = Sp(u) · u is called the normal curvature of M in the u direction. 

Given a unit tangent vector u to M at p, let a be a unit-speed curve in M 
with initial velocity α0(0) = u. Using the Frenet apparatus of a, the preceding 
lemma gives 

k(u) = Sp(u) · u = α00(0) · U(p) = k(0)N(0) · U(p) = k(0)cos(θ) 

Thus, the normal curvature of M in the u direction is k(0)cos(θ), where k(0) is 
the curvature of α at α(0) = p, and θ is the angle between the principal normal 
N(0) and the surface normal U(p), as in the figure. 
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Given u, there is a natural way to choose the curve so that θ is 0 or π. In fact, if 
P is the plane determined by u and U (p), then P cuts from M (near p) a curve 
σ called the normal section of M in the u direction. If we give σ unit-speed 
parametrization with σ0(0) = u, then N(0) = ±U(p), since σ00(0) = k(0)N(0) 
is orthogonal to σ0(0) = u and tangent to the plane P . 

So, for a normal section in the u direction (see figure below) 

k(u) = kσ(0)N(0) · U(p) = ±kσ(0) . 

Thus, it is possible to make a reasonable estimate of the normal curvatures in 
various directions on a surface M by picturing what the corresponding normal 
sections would look like. We know that the principal normal N of a curve tells 
in which direction it is turning. Thus, the preceding discussion gives geometric 
meaning to the sign of the normal curvature k(u) (relative to our fixed choice 
of U). 

(1) If k(u) > 0, then N(0) = U(p), so the normal section σ is bending toward 
U(p) at p (see figure above). Thus, in the u direction the surface M is bending 
toward U(p). 
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(2) If k(u) < 0, then N(0) = −U(p), so the normal section σ is bending away 
from U(p) at p. Thus, in the u direction M is bending away from U(p) (see 
figure above). 

(3) If k(u) = 0, then kσ(0) = 0 and N(0) is undefined. Here the normal section 
σ is not turning at σ(0) = p. We cannot conclude that in the u direction M is 
not bending at all, since k might be zero only at σ(0) = p. But we can conclude 
that its rate of bending is unusually small. 

Let us now fix a point p of M and imagine that a unit tangent vector u at p 
revolves, sweeping out the unit circle in the tangent plane Tp(M). From the 
corresponding normal sections, we get a moving picture of the way M is bending 
in every direction at p (see figure below). 

Definition: Let p be a point of M . The maximum and minimum values of the 
normal curvature k(u) of M at p are called the principal curvatures of M at 
p, and are denoted by k1 and k2. The directions in which these extreme values 
occur are called principal directions of M at p. Unit vectors in these directions 
are called principal vectors of M at p. 

Using the normal-section scheme discussed above, it is often fairly easy to 
pick out the directions of maximum and minimum bending. For example, if we 
use the outward normal U on a circular cylinder C as in the figure below, then 
the normal sections of C all bend away from U , so k(u) ≤ 0. Furthermore, it 
is reasonably clear that the maximum value k1 = 0 occurs only in the direction 
e1 of a ruling; minimum value k2 < 0 occurs only in the direction e2 tangent to 
a cross-section. 

An interesting special case occurs at points p for which k1 = k2. The 
maximum and minimum normal curvature being equal, it follows that k(u) is 
constant: M bends the same amount in all directions at p (so all directions are 
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principal). In this case, the point p is called an umbilic point of M . For instance, 
every point on the sphere of radius r is an umbilic point with k1 = k2 = −1/r. 

We now state a very important result concerning the shape operator. 

Theorem 

(1) If p is an umbilic point of M , then the shape operator S at p is just scalar 
multiplication by k = k1 = k2. 

(2) If p is a non-umbilic point, k1 6= k2, then there are exactly two principal 
directions, and these are orthogonal. Furthermore, if e1 and e2 are principal 
vectors in these directions, then 

Sp(e1) = k1e1 and Sp(e2) = k2e2 . 

In short, the principal curvatures of M at p are the eigenvalues of S, and the 
principal vectors of M at p are the eigenvectors of S. 

Through some translations and change of coordinates in R3 , it is possible to 
show that the shape of M near a point p is approximately the same as that of 
the surface M ’ given by 

2 z = 
1
(k1x + k2y 2) . 

2 
Here, p is at the origin and the x and y axes are the principal directions at p. 
M 0 is called the quadratic approximation of M near p. 

3.2.2 Gaussian Curvature 

The preceding section found the geometrical meaning of the eigenvalues and 
eigenvectors of the shape operator. Now we examine the determinant and trace 
of S. 

Definition: The Gaussian curvature of M is the real-valued function K = 
det(S) on M . Explicitly, for each point p of M , the Gaussian curvature K(p) 
of M at p is the determinant of the shape operator S of M at p. 

1The mean curvature of M is the function H = trace(S). Gaussian and mean2 
curvature are expressed in terms of principal curvature by 

1Lemma K = k1k2 and H = (k1 + k2).2 

Proof The determinant (and trace) of a linear operator may be defined as 
the common value of the determinant (and trace) of all its matrices. If e1 

and e2 are principal vectors at a point p, then by a previous result, we have 
Sp(e1) = k1(p)e1 and Sp(e2) = k2(p)e2. Thus, the matrix of S at p with 
respect to e1, e2 is 
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� � 
k1(p) 0 
0 k2(p) 

. 

This immediately gives the required result. 

During the 1800s, Carl Friedrich Gauss formulated a special theorem called 
Gauss’ Theorema Egregium. His theorem states that Gaussian curvature de-
pends primarily on the nature of the surface itself and is independent from how 
a surface is embedded or placed in space [1]. This implies that Gaussian cur-
vature is intrinsic to a surface rather than it being extrinsic. A great example 
to demonstrate this theorem is to compare a cylinder to a plane. For any given 
point on a cylinder, the principle curvature is some positive constant say k1 and 
the other is 0 by the construction of a cylinder. Hence, the product of these 
curvatures is 0 meaning the Gaussian curvature is 0 for that surface. The plane 
also has 0 Gaussian curvature because of its shape. By Gauss’ theorem a cylin-
der and plane are the same but just oriented differently in Euclidean space. This 
was a remarkable theorem for the field of differential geometry because intrinsic 
properties of surface can convey much information about various surfaces. 

From the definitions of curvature we can define a minimal surface. 

Definition: A surface is said to be a minimal surface if for every point on 
the surface the mean curvature, H = 0. This is also referred to as the vanishing 
of the mean curvature. 

This definition is consistent with the minimal surface equation. To simplify 
the idea of the curvature definitions, think of a surface’s curvature as being 
approximated by some circle or sphere that best approximates the curve or 
surface at a point, depending on if it is in R2 or R3 . Typically then, the actual 
curvature for the point will be the reciprocal of the radius for the circle or sphere 
approximation. Sections 3.1 and 3.2 lay the mathematical foundation for the 
advancements of spatial geometry for minimal surface theory in the 1800s. 

3.3 Soap Films and Plateau’s Problem 

Around 1870, The Belgian physicist, Joseph Plateau, experimented with 
soap films and soap bubbles to explain their physical nature. Soap films are 
created by a mixture of water and soap, and the addition of glycerin or corn 
syrup creates larger, more durable films and bubbles. Since water is a polar 
molecule, it has a molecular geometry that creates an unequal distribution of 
charge. Namely, the hydrogen atoms have a slight positive charge, and the 
oxygen atom has a slight negative charge. This unequal balance of charge causes 
water molecules to distribute an attractive force to other neighboring water 
molecules since the positive ends of hydrogen will attract the negatively charged 
ends of oxygen. This attraction causes a curvature to form on the surface, say a 
water droplet on a plant’s surface for instance, because the molecules of water 
near the surface will feel a stronger attraction of force coming from inside the 
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liquid rather than from the air molecules on the outside of the liquid. Hence, 
a curvature of the surface is formed. This property of pulling the surface of a 
liquid taut is called surface tension. See [4] for more details. The surface tension 
of a liquid can be altered by something called a surfactant. A surfactant usually 
lowers the surface tension of a liquid, thus soap is the surfactant in this solution. 
Soap is composed of molecules that have a hydrophilic and hydrophobic ends 
meaning water attracted and non-water attracted respectively. The hydrophilic 
ends remain in the soap-water solution, and the hydrophobic ends stick out of 
the solution. 

In his experiments, Plateau was able to theorize several laws of soap films 
that were later proven mathematically. His laws are the following: 

• The 120° Rule: Only three smooth surfaces of a soap film can meet along 
a line and the angle between any two of the three intersecting surfaces is 
120°. 

• 109° 28’ Rule: Only four lines, each formed by the intersection of three 
surfaces, can meet at a point and the angle between any pair of adjacent 
lines is arccos(−1/3) ≈ 109°280 . 

• The 90° Rule: A soap film which is free to move along a surface meets the 
surface at right angles. 

For more information regarding the laws and proofs of them refer to [18]. 

To mathematically discuss soap films and surface tension, mathematicians 
P.S. Laplace and Thomas Young derived an equation around 1800 that relates 
surface tension, the pressure difference on either side of the film, and the shape of 

1 
1 

1 
2

the film itself [10]. This is the equation: p = σ( ), where p is the pressure +R R 
difference on the sides of the film, σ is the surface tension of the substance, 

1 
1 

1 
2 

and and are the normal curvatures associated to any two perpendicular R R 
directions at a given point of the soap film surface. We can also write, based on 
the earlier definition of mean curvature in section 3.2, that p = 2σH because 

1 
1 

1 
2 

the normal curvatures and are the principal curvatures k1 and k2. Thus, R R 
the Laplace-Young equation allows soap films to be formulated purely with 
mathematics. It is important to note that this is one of the most fundamental 
equations for the mathematics of soap films. The consequence of this equation 
includes concluding that all soap films are physical models of minimal surfaces, 
and any soap film is a physical model of a local area minimizing surface as well 
as a surface of least area. This idea of a least area soap film model led to the 
problem known as Plateau’s Problem. 

Plateau’s Problem asks if it is possible to find a surface M that is minimal for 
any given boundary C. The problem also concerns the existence and uniqueness 
of solutions for a given boundary. It is important to note that when the term 
minimal is applied to a surface it does not imply that the said surface, with 
whatever constraints, is a surface of least area. Being a minimal surface and 
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being a surface of least area are quite different, but are often confused because 
they have some overlap when they are discussed. More specifically, for a surface 
to be minimal means that the surface locally minimizes its area, but it does not 
necessarily minimize the global area of a surface. This is why soap bubbles will 
not technically be called minimal surfaces even thought they are the shape that 
minimizes area for some arbitrary volume amount. For reference, remember the 
mantra that all surfaces of least area are minimal surfaces, but not all minimal 
surfaces are surfaces of least area. Weak solutions to Plateau’s problem were 
formulated not long after its proposal, but the first global solution was not 
made until the 1930s by Jesse Douglas. At this time, soap films were the first 
real physical models of minimal surfaces. Along with the study of soap films, 
complex analysis allowed more surfaces that are minimal to be discovered. 

3.4 Complex Analysis Connections 

The subject of complex analysis connects to minimal surfaces in the use of 
what is known as holomorphic and harmonic functions. A function f is complex 
differentiable at a point z0. Here z0 is an element of the complex plane, and we 
say the function f(z0) is differentiable if 

f(z) − f(z0)
lim . 
z→z0 z − z0 

Additionally, this limit must exist for all elements on the domain in order 
for it to be complex differentiable. It is then called a holomorphic function. A 
holomorphic function can be written as a function that is of a real part and 
an imaginary part. The real and imaginary parts for a holomorhpic function 
are each a harmonic function meaning that they satisfy the Cauchy-Riemann 
equations. 

The Weierstrass-Enneper Representation are a set of equations that 
represent a connection between holomorphic functions and minimal surfaces. 
Here is the set of formula representations according to [24]: 

If f is holomorphic, g is meromorphic, and fg2 is holomorphic on a given set 
domain D, then a minimal surface is defined by the parametrization x(z, z̄) = 
(x1(z, z̄), (x2(z, z̄), (x3(z, z̄)), where R 

x1(z, z̄) = Re f(1 − g2)dz,R 
x2(z, z̄) = Re if(1 + g2)dz,R 
x3(z, z̄) = Re 2 fgdz. 

From these formulas we can generate minimal surfaces by finding holomorphic 
functions. This was an enormous break through for minimal surfaces theory 
because it not only connected the surfaces to complex analysis, which at the 
time was just beginning to be created, but it also made it easier to generate 
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new minimal surfaces. Thus, several new minimal surfaces were found during 
this period namely by Heinrich Scherk. Some examples follow. 

• Scherk’s 1st Surface:This surface was generated with the use of the 
Monge-Legendre representation. Scherk also found several other minimal 
surfaces during this time. 

• Catalan’s Surface: One of the self-intersecting surfaces that was found 
using the revolutionary Weierstrass-Enneper representation. 

• Enneper’s Surface: Of course Enneper used the representations noted 
earlier to find this minimal surface. 
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4 The 2nd Golden Age: 1930-1950 

The largest achievements in the second age were the solution to Plateau’s 
problem, the solution to Bernstein’s Theorem, and the analysis of other partial 
differential equations. Plateau’s Problem proved to be a very difficult problem 
in the field of minimal surface theory because it involved continuous boundaries 
of non-linear orientation and it was also a global theory problem. A boundary 
of continuity of non-linear orientation here means that the boundary is not 
necessarily constructed out of straight lines and instead can be of a circular 
shape. The problem is also a global problem because it concerns the behavior 
of least area surfaces which must globally minimize area. Recall that not all 
minimal surfaces are of least area. Those that are not of least area minimize area 
locally around each point, but not globally. An example that demonstrates how 
minimal surface do not always minimize surface area is seen in section 5.6 of [10]. 
For a much more in depth difference between least area surfaces and minimal 
surfaces see [17]. The property of a surface achieving global minimization of 
area is what concerns Plateau’s Problem. 

The solution of Plateau’s problem came from two independent mathemati-
cians at slightly different times during this century: Jesse Douglas [9] and Tibor 
Rado [21]. The first solution by Douglas was nearly a century after its proposal 
by Plateau which further demonstrates the complexity of the problem. One of 
the main advantages of the solution to the problem was the fact that it was 
a global solution which very few problems in minimal surface theory involve 
global solutions. 

Historically, during the 20th century Albert Einstein formulated his Spe-
cial and General Theory’s of relativity. Minimal surfaces do not directly have 
much influence on his theory, but Einstein’s theory is predicated on the use of 
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Riemannian Geometry and manifolds which thereby concern how nature con-
forms to certain geometrical objects or surfaces. His theory, in a sense, explains 
how space and time exist as a fabric where all matter resides. The mass of 
an object warps the fabric of space-time, and causes the fabric to curve much 
like a bowling ball resting on a trampoline’s surface. That said, it has been 
shown earlier how nature tends to optimize geometry, so there must be some 
way that minimal surfaces exist in physical phenomena. Einstein’s theory the-
orizes that if a mass is significant enough it could cause space-time to curve 
drastically creating a singularity more commonly known as a black hole. That 
said, since the early 1900s, Einstein’s theory has remained the cornerstone to 
our current understanding of cosmology and physics. In his theory, Einstein’s 
theory asserts that the creation of singularity points in the curvature of space-
time can occur, and these are known as black holes. What is interesting is that 
Black Holes have recently been theorized to display Marginally trapped surfaces 
around their event horizon which create a hypersurface that are constructed of 
quasi-minimal surfaces [2]. In terms of the classical theory, the previous top-
ics of Plateau’s problems and mathematical physics were the most progressive 
advancements. 

After this Golden Age, minimal surface theory began to approach the anal-
ysis of surfaces with in higher dimensions and manifolds. Therefore, since the 
1980s, Meeks and Perez argue that the field of minimal surfaces is currently in 
a third age of progression. 

The 3rd Golden Age: 1980-Present 

In this current period, the modern theory of minimal surfaces begins to 
develop from the creation of several branches of mathematics including: Ge-
ometric Measure Theory, Conformal Geometry, functional analysis, etc. This 
period is also emphasized by extensive research on the classical theory of mini-
mal surfaces as well as global problems related to minimal surfaces. The current 
understanding of minimal surfaces has progressed into discussing areas of mini-
mal submanifolds, minimal surfaces in manifolds of higher dimensions, and the 
analyzing of constant mean curvature surfaces. Geometric measure theory as 
well as many other fields of math that developed allowed more surfaces to be 
explored then previously in Classical Minimal Surface Theory. The new fields 
of mathematics mentioned above now allow for the analysis of surfaces that 
contain singularities. The types of singularities on surfaces include: self sur-
face intersections, points were the surface has holes, or points that blow up to 
infinity. Since the details of this third Golden Age of the theory is far too ex-
tensive to note, it may be more fruitful to discuss how minimal surfaces have 
led to applications in other research areas and what current problems exist in 
the theory. 
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Several articles connect minimal surface theory to certain applications in re-
search fields including: architecture, materials engineering, biology, and physics. 
Hence, the importance of minimal surface theory as a whole is displayed. 

Minimal surfaces have been used in the fields of architecture and materi-
als engineering. Mainly, minimal surfaces with least-area like property globally 
could reduce the amount of materials needed to build roofs, buildings etc. For in-
stance, Frei Otto used minimal surfaces to construct the 1972 Summer Olympic 
Games Stadium in Munich Germany. He combined the use of minimal surfaces 
properties and light weight materials to build magnificent roofing. 

Frei Otto also used minimal surfaces in other designs such as the German 
Pavillon Expo of 1968 and the Kongreshall in Berlin [22]. 

In addition to architecture, minimal surfaces have also been shown to apply 
to materials engineering as well as biological systems. According to authors Lu 
Han and Shunai Che, certain triply periodic minimal surfaces are well connected 
to the study of natural systems and can be used to create materials from their 
unique geometries [12]. They connect triply periodic minimal surfaces to recent 
developments into block copolymer systems and other self assembling systems. 
Another minimal surface that has been connected to materials science is the 
gyroid discovered in 1970 by Alan Schoen [13]. The gyroid is an example of 
one such minimal surface that has been observed in diblock copolymer systems. 
Here is the visualization of a gyroid: 
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Lastly, other major fields that minimal surfaces have also been linked to 
are physics and mathematical theories. Meeks and Perez note several problems 
that were solved with the aid of minimal surface theory such as the Positive 
Mass Conjecture, the Penrose Conjecture, Smith Conjecture and the Poincare 
Conjecture [23]. A more in depth study into these connections is seen in these 
references ([14], [16], [15]). for more information. All of the aforementioned 
conjectures have serious consequences in the overall mathematical and physics 
communities which further emphasize the importance minimal surfaces have 
played in reality. Thus, the study of minimal surfaces is justified and it is 
remains to be a lucrative field for knowledge. That is why the study of minimal 
surfaces should continue into the future. 

Lastly, There are various open problems in the theory of minimal surfaces 
and they would be too numerous to list here. However, several sources go on 
to note the open problems in the field for research. Refer to these sources for 
some of the current open problems in the field of minimal surfaces [23], [3], and 
[7]. Some of these open problems have been solved however the field is still very 
free for future research. That said, there is sure to be another Golden Age for 
minimal surfaces in the upcoming years. Hence, the study of minimal surfaces 
is now more than ever a rich field of information in which, hopefully, many 
mathematicians or those sparked with interest in the subject should indeed 
attempt to expand the current knowledge of minimal surface theory. 
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