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ABSTRACT 

Data gathering is a network communication task in which all of the network’s nodes send their 

individual messages to a distinguished sink node. In cognitive radio ad hoc and sensor wireless 

networks (CR-AHSWNs), unlicensed secondary users (SUs) opportunistically use channels 

when the licensed primary users are not using them. Therefore, the channels available to each SU 

vary with time and location, which makes the development of data gathering algorithms for CR-

AHSWNs challenging. 

In this thesis, a data gathering protocol for CR-AHSWNs is proposed. The protocol consists of 

several distributed SU action selection and channel selection algorithms. An algorithm that can 

reduce the data gathering delay by selecting message forwarding SUs is also proposed. Finally, 

an algorithm that calculates an estimate of the successful data gathering ratio (SDGR) is 

proposed. The SDGR is affected by each SU’s channel availability and network collisions, and 

the exact value is extremely challenging to calculate. 

INDEX WORDS: cognitive radio, ad hoc and sensor wireless networks, data gathering, non-
uniform channel availability, channel hopping 
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Chapter 1: Background 

This chapter provides background information on the three basic concepts covered in this thesis: 

ad hoc and sensor wireless networks, cognitive radio, and the data gathering operation for 

wireless networks. In addition, this chapter describes prior research on these concepts and its 

applicability to the specific area of data gathering in cognitive radio ad hoc and sensor wireless 

networks (CR-AHSWNs). Finally, the network model and assumptions that are used throughout 

the rest of the work are provided. 

1.1 Ad Hoc and Sensor Wireless Networks 

Ad hoc and sensor wireless networks (AHSWNs) are wireless networks that operate without any 

type of infrastructure or centralized control [1], Message transmissions in an AHSWN can be 

either single hop, when the intended destination node is within the transmission radius of the 

sending node, or multi-hop, when the intended destination node is not within the transmission 

radius of the sending node. When multi-hop routing is required for message transmission, 

intermediate nodes must forward the message until it reaches its destination [1], 

AHSWNs are flexible, low-cost, and can be quickly deployed [2], These factors make them 

useful in applications in many areas, including military, healthcare, industrial monitoring, and 

environmental monitoring. 

1.2 Cognitive Radio 

In the United States and many other countries, government agencies issue licenses for the 

exclusive use of radio spectrum frequencies. The demand for radio spectrum is increasing, but 
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unlicensed frequencies are becoming scarce [3], Studies have found that some licensed radio 

spectrum is underutilized [4], and cognitive radio (CR) technology has been proposed as a 

method for efficiently using those underutilized frequencies [5], Specifically, CR allows 

unlicensed Secondary Users (SUs) to opportunistically use licensed frequencies when the 

licensed Primary Users (PUs) are not using them [6] . 

A PU always has priority on the use of its licensed frequency, so an SU must vacate a frequency 

when a PU begins using it. Therefore, the SUs must sense their environment to determine which 

frequencies are available for use and adjust their available frequencies, or channels, accordingly. 

Since the SUs must be able to switch channels, SUs in CR networks are multi-channel, and the 

specific channels available to individual SUs vary with location and time [6]. The dynamic 

nature of the CR networks makes the design of network protocols for CR networks difficult. 

Figure 1 illustrates this difficulty: 

[1,2, 3] [1, 2] 

Figure 1: CR-AHSWN - message transmission between two SUs 

SU A needs to send a message to SU B. Each SU has its own set of available channels; ,4’s 

available channel set is (1,2, 3}, and 5’s available channel set is {1, 2}. In order to successfully 

transmit the message, both A and B will need to select the same channel at the same time. 

However, neither SU knows which channel the other is currently using. In addition, neither has 

any knowledge of the other’s available channel set. 
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Cognitive radio devices can be used in AHSWNs, creating cognitive radio ad hoc and sensor 

wireless networks (CR-AHSWNs). 

1.3 Data Gathering 

Data gathering is a primitive networking operation in which all nodes in the network must send 

their individual messages to a distinguished sink node [7]. Therefore, each node in the network 

must send its own message and each message that it receives towards the sink node. In the 

network shown in Figure 2, the sink node for the network is node S. Node B sends its message to 

A since A is on the path between B and S. Node C also sends it message to A. Consequently, node 

A must send three messages to S: its own message, the message from B, and the message from C. 

Every message is sent separately towards the sink node without any data combination or 

aggregation. 

Figure 2: The data gathering operation 

1.4 Prior Work 

Prior work on data gathering has been focused on traditional, single-channel AHSWNs. The 

main difference between traditional AHSWNs and CR-AHSWNs is channel availability. In 

traditional AHSWNs, there is usually only a single channel available on the network, and 

communication between nodes simply uses that channel. In CR-AHSWNs, the channel 
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availability for every SU is dynamic. Not only can an SU have a different available channel set 

than its neighbors, its available channel set can change every time a PU uses or vacates a 

channel. In practice, SUs typically do not have any way to discover the currently available 

channels of their neighboring SUs. 

Data gathering for traditional AHSWNs usually requires using efficient link scheduling 

algorithms that guarantee collision-free message transmissions with low delays [7]. However, 

SUs in CR-AHSWNs typically do not have any knowledge of the network topology, so link 

schedules cannot be created. In previous work on CR-AHSWN operations, the SUs use time-

slotted channel hopping [8] [9]. In time-slotted channel hopping, a channel is chosen for each 

time slot over a predetermined number of time slots, and a message transmission is attempted in 

each time slot. Since every message transmission is attempted multiple times, and SUs that are 

sending to a common receiving SU can choose different channels, a collision free protocol is not 

required for successful message transmissions. Instead, successful message transmission depends 

on the probability that the sending SU and receiving SU will select the same channel in at least 

one time slot, and that no other sending SU selects the same channel in that time slot. 

A significant amount of research has been focused on the broadcast operation in CR networks [8] 

[9] [10] [11] [12], Some of this work can also be applied to the data gathering operation. 

Specifically, the channel selection techniques described in [8] and [9] can be used to develop a 

channel selection algorithm for data gathering that can guarantee that pairs of sending and 

receiving SUs select the same channel, as demonstrated in Section 2.4.3. 



 

                

                 

                  

                

              

               

       

     

             

                  

               

                 

                 

               

               

                 

                 

              

                

          

5 

In [10], an analytical model for evaluating the success ratio and delay of the broadcast operation 

on CR networks is presented. In the broadcast operation, a source SU sends a single message that 

must be propagated to every other SU in the network [7]. In data gathering, every SU sends a 

message that must be received by the sink SU [7], Because of these differences, the analytical 

model presented in [10] cannot be used for the evaluation of data gathering performance. 

Therefore, a novel algorithm for calculating the success ratio for the data gathering operation on 

CR networks is proposed in chapter 4. 

1.5 Network Model and Assumptions 

Each device in the CR-AHSWN is equipped with an omnidirectional antenna, which transmits 

and receives messages in all directions. Each device has either one radio or two radios. In the one 

radio device, the single radio is dual function; it can switch between transmitting and receiving 

messages and can only perform one function at a time. The two radio device has one transmitter 

and one receiver, and these radios can operate at the same time. Separate algorithms for the one 

and two radio devices are provided in the data gathering protocol described in chapter 2. 

Every device in the CR-AHSWN has the same circular transmission radius, and all SUs within 

an SU’s transmission radius are considered neighbors of the SU. If two or more devices use the 

same channel to send to an SU that is within both of their respective transmission radii, a 

collision will occur between the messages, and none of the messages will be successfully 

transmitted. Every device has access to the same set of channels, but the channels available to 

each SU differ based on activity of their neighboring PUs. 
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During the data gathering operation, it is assumed that the SUs’ available channel sets and 

locations will remain stable. Once a data gathering operation starts, the SUs will not lose or gain 

channels or move to a new location until after the sink SU has received the final data gathering 

message and the data gathering operation is complete. 

The system times on all the devices in the CR-AHSWN are synchronized, and all SUs operate 

using time slots with the same predetermined length. The length of the time slot is long enough 

for the successful transmission of a message across the entire SU transmission radius. Therefore, 

there is an upper limit on the size of a single data gathering packet. That is, every data gathering 

packet must be able to be transmitted within the length of a time slot. 

A CR-AHSWN can be represented as an undirected graph, with the SUs represented by the 

graph’s vertices. Two SU vertices are directly connected in the graph if and only if they have at 

least one channel in common and their Euclidean distance is no more than the SU transmission 

radius. 

Finally, the data gathering protocols described in chapter 2 are intended to work under realistic 

conditions for practical applications of CR-AHSWNs. The algorithms are distributed; each SU 

must make its own decisions on when to send and when to listen. Each SU must also determine 

which channels to use for these actions. There is no central control SU that determines how the 

data gathering operation should be performed. Each SU determines its own available channel set 

by sensing the current PU channel usage within its sensing radius. However, the SUs have no 

information about the available channel sets of their neighbors, and the SUs have very little 
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information about the network topology. These conditions are typically considered realistic for 

practical applications of CR-AHSWNs. 



     

  

               

                

              

               

                

               

             

              

                

               

         

               

              

              

                

                 

           

Chapter 2: Data Gathering Protocol 

2.1 Overview 

Data gathering is a challenging operation to implement in a CR-AHSWN for two reasons. First, 

as discussed in the previous chapter, the SUs in a CR-AHSWN typically have no knowledge of 

the available channel sets of neighboring SUs. This makes the implementation of the data 

gathering operation difficult because, in a data gathering operation, a sending SU must find a 

matching channel with a receiving SU for each individual message that it sends. Second, SUs in 

a CR-AHSWN typically do not have knowledge of the full network topology, so they cannot 

determine which of their neighbors are on a path to the sink SU. 

In this chapter, a data gathering protocol for CR-AHSWNs is presented. This protocol includes 

distributed algorithms that SUs use to determine when to send and when to listen for messages 

without any knowledge of the network topology, as well as algorithms for channel selection that 

do not require knowledge of neighboring SUs’ available channels. 

The proposed data gathering protocol is composed of three parts: an initialization step, the action 

selection algorithm, and the channel selection algorithm. In the initialization step, the SUs gather 

information that is necessary for the protocol algorithms. Each SU uses the action selection 

algorithm to determine which action it should perform in each time slot. The action choices are 

to send, listen, stay silent (neither listen nor send), or stop. Each SU uses the channel selection 

algorithms to determine which channel to use when sending or listening. 



 

  

                  

                 

                  

               

                 

     

              

             

             

                

                 

               

  

                

                  

                   

                  

               

                 

9 

2.2 Initialization 

The data gathering sink SU must establish itself as the sink SU for the network by sending a 

message to all of the other SUs in the network. This is accomplished using a broadcast operation, 

which is a network operation in which a single message is sent by a source node, and the 

message is then propagated through the entire network until every node in the network has 

received the message [7]. In the initialization step, the data gathering sink SU acts as the source 

SU for the broadcast operation. 

Since the proposed data gathering protocol should work without the SUs having knowledge of 

the network topology, the broadcast operation must also work without the SUs having 

knowledge of the network topology. Two broadcast protocols that operate without the network 

topology are given in [8] and [9]. The chosen broadcast protocol for this initialization step should 

have a high success ratio, which is the probability that all SUs in the network receive the 

broadcast message. Only the SUs that receive the broadcast message will participate in the data 

gathering operation. 

As the broadcast messages pass through the network, each SU will include its own best known 

hop distance to the sink SU in the broadcast message. In this context, an SU’s best known hop 

distance to the sink SU is the number of hops the broadcast message took from the sink SU to 

reach the SU. The sink SU will include its best known hop distance, which is zero, in its 

broadcast message. As each SU receives the broadcast message, it will remove the sending SU’s 

distance and increment it by one to determine its own best known hop distance. Then, it will 
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include its own best known hop distance in the broadcast message that it sends. Using this 

method, every SU will be able to determine its best known hop distance to the sink SU. 

This initializing broadcast step should be run as frequently as necessary based on the needs of the 

specific CR-AHSWN. In the action selection algorithms described in the next section, the SU’s 

best known hop distance is used to determine the SU’s action. However, the activity of the PUs 

or movement of SUs could invalidate the previously established best known hop distances. 

Therefore, it is important that the initializing broadcast operation be run frequently enough to 

maintain valid SU best known hop distances so that SUs can successfully send their data 

gathering messages to neighboring SUs. Stable systems with little PU activity, immobile SUs, 

and many available channels could run the initializing broadcast once, while systems with a 

significant amount of PU activity, mobile SUs, and smaller available channel sets might need to 

run the initializing broadcast on a more frequent basis. 

2.3 Action Selection 

Two action selection algorithms are developed in this section: one for devices with a single 

radio, and one for devices with two radios. The algorithms for these devices are very similar. The 

SUs determine their current action using their best known hop distance to the sink SU and the 

current time slot. The algorithms are designed so that the SUs send their data gathering 

messages to neighboring SUs that are one hop closer to the sink SU. 

It is possible for messages to be sent from one SU to another that has a greater best known hop 

distance. This could occur in dense networks where the SUs are very close together. To prevent 
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these backwards message transmissions, each SU must include its own best known hop distance 

in each data gathering message that it sends. Receiving SUs will drop received messages when 

the distance in the message is less than its own distance. 

In each of these algorithms, the SUs cycle through the actions until the stopping criteria are met. 

The SU performs the selected action for Sr consecutive time slots. The Sr consecutive time slots 

are collectively referred to as an action interval. 

Each SU maintains a queue of the messages that it needs to send. The queue is initially populated 

with the SU’s own message, and each message that is received is added to the queue. In the 

beginning of each send interval, the SU removes the message at the front of its send queue and 

attempts to send it for the duration of the send interval. 

The stopping criteria for the action cycles are tracked with four flag variables: collision, done, 

last, and listen. The collision flag is set to true when an SU is listening and detects that a 

collision occurred between two or more messages during a listen interval. 

The done flag is set to true when the SU is done listening because no additional messages will be 

received. The done flag is set to true when the following two conditions are met: 

1) In the last listen interval, one of these conditions occurs: 

• The SU received no messages. 

• All of the last flags included with the received messages are true. 

2) The SU’s collision flag is false. 
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The listen flag is set to true when the SU has completed a listen interval. This flag ensures that 

SU has performed at least one listen interval before stopping. 

Finally, the last flag is set to true when the following two conditions are met: 

1) The SU’s done flag is true. 

2) The SU’s message queue contains one message. 

The sending SU includes its last flag with the messages that it sends, and this flag indicates to 

the receiving SU that this message is the last message that the sending SU will send. 

An SU exits the action cycle and stops when it is done listening and sending; that is, when the 

SU’s done flag is true and its send queue is empty. The data gathering operation for the network 

is complete when the sink SU has stopped. 

The length of the action interval depends on two things: the length of the channel sequences 

produced by the specific channel selection algorithms and the performance requirements of the 

network. If the channel selection algorithm requires a specific number of time slots, such as the 

Guaranteed Channel Match channel selection algorithms described in Section 2.4.3, then the 

action interval length must equal the number of time slots required by the channel selection 

algorithm. 

However, if the channel selection algorithm does not require a specific number of time slots, 

such as the random channel selection method described in Section 2.4.2, the value of Sr is 
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determined using the requirements of the network. The performance metrics for a network 

operation are typically the success ratio and the delay [10]. In the data gathering operation, the 

success ratio is the probability that the sink SU will receive messages from all of the other SUs in 

the network. The delay is the number of time slots required for the entire data gathering 

operation to complete successfully, from the time when the first data gathering message is sent to 

the time when the last message is received by the sink SU. Choosing a value of Sr is a trade-off 

between the success ratio and the delay performance metrics [9], For the random channel 

selection algorithm, a larger value ofSr will result in both a greater success ratio and a greater 

delay than a smaller value of Sr. 

2.3.1 Assumptions 

For a successful data gathering to occur using the action selection algorithms described in this 

section, the channel selection must meet the following requirements: 

1) At least one set of channel sequences for all SUs in the network must exist such that 

every sending SU in the network is able to select a channel that matches the channel of at 

least one of its receiving SUs in at least one time slot. 

2) For at least one of the receiving SUs and at least one of the time slots in which the 

channels of the sending SU and the receiving SU match, no other SU sending to that 

receiving SU selects the same channel. 

If these requirements are not met, the action selection algorithms cannot be used, because the 

data gathering operation will always fail. 
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2.3.2 One Radio 

2.3.2.1 Description 

In the action selection algorithm for devices with one radio, the SUs perform actions in the cycle 

shown in Figure 3. The SUs cycle through the actions until the stopping criteria described in the 

previous section are met. The SUs can start anywhere in this cycle, and, as described previously, 

each SU must perform at least one listen interval before stopping. 

Silent Send 

Figure 3: Action cyclefor CR-AHSWNs using devices with one radio 

2.3.2.2 Algorithm 

The notations shown in Table 1 are used in both the one radio and two radio action selection 

algorithms shown in Sections 2.3.2.2 and 2.3.3.2 respectively. 
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Table 1: Notationfor the action selection algorithms 

time The current time slot 

Sr The number of consecutive time slots in an action interval 

v.dist SU v’s best known hop distance to the sink SU 

SU v’s action. The options are Send, Listen, Silent, and 
v.action Stopped. The two radio device has an additional action 

option: Send/Listen. 

v.done Flag that indicates that SU v is done listening 

v.last Flag that indicates that SU v has sent its last message 

v.listen Flag that indicates that SU v has performed a listen interval 

v.collision Flag that indicates that SU v detected a collision 

SU v’s received message list. This list holds the messages 
that SU v received in its last listen interval. 

v.SQ SU v’s message send queue 

|v.S£?| The number of messages in SU v’s send queue 
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Algorithm 1: Select an action (Send, Listen, Silent, Stopped) for SU v. The SUs in this network 
have one dual function radio. 

Input: time, Sr, v.dist, v.action 
Output: v.action 

1 if (time % Sr) = 0 then 

2 /* time to switch actions */ 
3 if v.done = True and v.last = True then 
4 /* SU v is done listening and has sent its last message*/ 
5 v.action = Stopped 
6 
7 else 

8 /* choose action using time and distance */ 
9 if (time / Sr) % 3) = 0 then 
10 if (v.dist % 3) = 1 then 
11 set_action_send() 
12 else if (v.dist % 3) = 0 then 
13 set_action_listen() 
14 else 
15 v.action = Silent 
16 
17 else if (time / Sr) % 3) = 1 then 
18 if (v.dist % 3) = 0 then 
19 set_action_send() 
20 else if (v.dist % 3) = 2 then 
21 set_action_listen() 
22 else 
23 v. action = Silent 
24 
25 else if (time / Sr) % 3) =2 then 
26 if (v.dist % 3) = 2 then 
27 set_action_send() 
28 else if (v.dist % 3) = 1 then 
29 set_action_listen() 
30 else 
31 v.action = Silent 
32 
33 return v.action 
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Algorithm 2: This helper function is used when the SU sets its action to Send. 

set_action_send(): 
1 v.action = Send 
2 if v.listen = True then 
3 /* the SU must have listened at least once before setting the 

other flag values */ 
4 if ((v.RM = [] or for all messages in v.RM last = True) and 

v.collision = False) then 
5 v.done = True 
6 if v is the sink then 
7 v.action = Stopped 
8 else if |v.SQ| = 1 then 
9 v.last = True 
10 else if |v.SQ| = 0 then 
11 v.action = Stopped 

Algorithm 3: This helper function is used when the SU sets its action to Listen. 

set_action_listen() : 
1 v.action = Listen 
2 v.listen = True 
3 v.RM = [] 

2.3.2.3 Example 

The action selection algorithm for one radio devices is demonstrated using the CR-AHSWN 

shown in Figure 4. SU S is the sink SU for the data gathering operation, and the length of the 

action interval, Sr, is four time slots. Therefore, the SUs’ actions change every four time slots. 

All of the SUs, with the exception of the sink SU, initially populate their send queues with their 

own data gathering messages. 



 

  

  
  

  
  

  
  
  

           

                  

                

           

18 

dist: 0 

dist: 1 
action: silent 
done: F 
listen: F 
last: F 
RM: [] 
SQ: [BJ 

Figure 4: Example ofaction selectionfor one radio - initialization 

In Figures 5 through 12, SUs that are listening are shaded light grey, SUs that are sending are 

shaded dark grey, and SUs that are silent or stopped are white. Throughout the example, all 

message transmission are assumed to be successful, and no collisions occur. 
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At time 0, SUs A and B send their messages while SUs S and D listen, as shown in Figure 5. The 

listening SUs set their listen flags to true. 

Time = 0 
dist: 0 
action: listen 
done: F 
listen: T 
last: F 

dist: 1 
action: send 
done: F 
listen: F 

: □ 
dist: 1 
action: send 
done: F 
listen: F 

last: F last: F 
RM: [] 
SQ:[A] 

RM: [] 
SQ: [B] 

dist: 2 
action: silent 
done: F 
listen: F 
last: F 
RM: [] 
SQ: [C]

dist: 3 
action: listen 
done: F 
listen: T 
last: F 
RM: [] 
SQ:(Dj 

Figure 5: Example ofaction selectionfor one radio - time 0 
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At time 4, SU D’s action is Send, and it sets its flag values. Since D did not receive any messages 

in its last listen interval, its done flag is set to true. In addition, D has only one message in its 

send queue, so its last flag is set to true. D includes its last flag with its data gathering message. 

SU S selects the Send action at time 4, but the sink SU does not actually send any messages. For 

the sink SU, the Send action is equivalent to Silent. SU C listens during this action interval. 

Time = 4 
dist: 0 
action: send 
done: F 
listen: T 
last: F 

[A, B]
dist: 1 dist: 1 
action: silent action: silent 
done: F done: F 
listen: F listen: F 
last: F last: F 
RM: [] RM: [] 
SQ: [] SQ: [] 

dist: 2 
action: listen 
done: F 
listen: T 
last: F 
RM: [] 
SQ:[C]

dist: 3 
action: send 
done: T 
listen: T 
last: T 
RM: [] 
SQ:[D] 

Figure 6: Example ofaction selectionfor one radio - time 4 
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At time 8, SU D's done and last flags are both true, so D's action changes to Stopped. SUs A and 

B listen during this action interval. 

SU C received D’s message in the last listen interval and added the message to its send queue. 

Since the last flag included with D’s message was true and it was the only message that C 

received during the last listen interval, C sets its done flag to true. During this action interval, C 

sends its own message because it is at the front of C’s send queue. 

Time = 8 
dist: 0 

Figure 7: Example ofaction selectionfor one radio - time 8 



 

                   

             

   

  
  

  
  

  
  

 

  
  

  
  

  
  

  
  
 

  
  
  
  

  
  
 

  
  
     

 

  
  

  
  

  
 
 

            

22 

At time 12, SUs A and B have both received C’s message. During this action interval, both A and 

B are attempting to send C’s message to SU S, which is listening. 

Time = 12 
dist: 0 
action: listen 
done: F 
listen: T 
last: F 
RM.: []

dist: 1 dist: 1
action: send 

action: send
done: F done: F
listen: T listen: T
last: F last: F
RM: [C] RM:[C]
SQ:[CJ SQ:[C] 

dist: 2 
action: silent 
done:T 
listen: T 
last: F 
RM: [D (last = T)] 
SQ:[D]

dist: 3 
action: stopped 
done:T 
listen: T 
last: T 
RM: [] 
SQ: [] 

Figure 8: Example ofaction selectionfor one radio - time 12 



                

   

  
  

  
  

  
  
  

  
  

  
  

  
  

  
  
 

  
  
  
  

  
  
 

  
  
  

 

  
  

  
  

  
  
  

            

At time 16, SU C listens while all of the other SUs are silent or stopped. 

Time = 16 
dist: 0 
action: send 
done: F 
listen: T 
last: F 
RM.: [C]

dist: 1 
dist: 1

action: silent action: silent
done: F 

done: F
listen: T listen: T
last: F last: F
RM: [C] RM: [C]
SQ: [] SQ: [] 

dist: 2 
action: listen 
done:T 
listen: T 
last: F 
RM: [] 
SQ:[D]dist: 3 

action: stopped 
done:T 
listen: T 
last: T 
RM: [] 
SQ: £] 

Figure 9: Example ofaction selectionfor one radio - time 16 
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At time 20, SU C detects that it did not receive any messages in its last listen interval, so its done 

flag is set to true. In addition, since C has only one message in its send queue, its last flag is set 

to true. During this action interval, C sends its last message, which is the message it received 

from D, and includes its last flag with the message. 

Time = 20 
dist: 0 
action: silent 
done: F 
listen: T 
last: F 

■ : [C]
dist: 1 

dist: 1 
action: listen action: listen 
done: F done: F 
listen: T listen: T 
last: F last: F 
RM: [] RM: []
SQ: [] 

SQ: [] 
dist: 2 
action: send 
done:T 
listen: T 
last: T 
RM: [] 
SQ:[D]

dist: 3 
action: stopped 
done:T 
listen: T 
last: T 
RM: [] 
SQ: [] 

Figure 10: Example ofaction selectionfor one radio - time 20 
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At time 24, SU Cs done and last flags are true, so C stops. SUs A and B have both received D’s 

message from C, along with C’s last flag. This is the only message that A and B received in their 

last listen interval, so both SUs set their done flags to true. Also, both SUs have only one 

message in their send queues, so their last flags are set to true. 

During this action interval, SUs A and B attempt to send £>’s message to listening SU S. 

Time = 24 
dist: 0 
action: listen 
done: F 
listen: T 
last: F 
RM.: (] 

dist: 1 
dist: 1 action: send 
action: send done:T 
done:T listen: T 
listen: T last: T 
last: T 
RM: [D (last = T)] 
SQ:[D] dist: 2 

RM: [D (last = T)] 
SQ:[D] 

action: stopped 
done:T 
listen: T 
last: T 
RM: [] 
SQ: []

dist: 3 
action: stopped 
done:T 
listen: T 
last: T 
RM: [] 
SQ: [] 

Figure 11: Example ofaction selectionfor one radio - time 24 



 

                    

                        

               

        

   

  
  

 
  

  
 

  

  
  

 
  

  
  
  

  
  

 
  

  
     

  
  

 
  

  
 

  
  

  
 

  
  
  
  

            

  

               

                

               

               

                 

26 

At time 28, SUs A and B stop, SU S has received D’s message and the included last flags from 

SUs A and B. SU S sets its done flag to true, and since S is the sink SU, it changes its action to 

Stopped. The data gathering operation is complete, and the sink SU, S, has received messages 

from all of the SUs in the network. 

Time = 28 dist: 0 
action: stopped 
done:T 
listen: T 
last: F 
RM.: [D (last = T)] 

dist: 1 
dist: 1action: stopped 
action: stoppeddone:T 
done:Tlisten: T 
listen: Tlast: T 
last: TRM:[D] 
RM:[D]SQ: [] 
SQ: 1] 

dist: 2 
action: stopped 
done:T 
listen: T 
last: T 
RM: [] 
SQ: []

dist: 3 
action: stopped 
done:T 
listen: T 
last: T 
RM: [] 
SQ: [] 

Figure 12: Example ofaction selectionfor one radio - time 28 

2.3.2.4 Analysis 

Theorem 1: The proposed action selection algorithm will allow messages from all SUs in the 

network to reach the sink SU, assuming that a successful data gathering is possible. Section 2.3.1 

describes the requirements that must be met for a successful data gathering to be possible. 

Proof: Two conditions must be analyzed for this proof. First, the data gathering operation cannot 

terminate while messages remain unsent in the network. This is controlled by the use of the SUs’ 
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send queues and the last flag. An SU will not exit the action cycle until one of the following 

conditions has been met: 1) the send queue is empty or 2) the SU’s last flag has been set to true, 

which indicates that the last message in the send queue was sent in the last send interval. 

Second, the data gathering operation cannot terminate before all SUs have attempted to receive 

messages for at least one listen interval. Since the SUs have no knowledge of the network 

topology, and therefore, no knowledge of whether they can receive messages from other SUs, 

every SU must perform at least one listen interval. This is controlled with the listen flag, which is 

only set to true when the SU performs a listen interval. In addition, the done flag ensures that the 

SU does not exit the action cycle until there are no further incoming messages. The SU will not 

stop cycling through the actions until it has: 1) received no messages or all received messages 

indicated that they were the last messages to be sent by the sending SUs and 2) the SU did not 

detect any collisions in the last listen interval. 

Theorem 2: Each sending SU has at least one neighboring SU that has a smaller best known hop 

distance to the sink SU. This is a necessary condition for transmitting messages towards the sink 

SU. 

Proof: The best known hop distance to the sink SU will be represented by d. The action 

selections ensure that when SUs with distance d are sending, SUs with distance d-1 are listening. 

First, since each SU determined its distance during the initialization step when it received the 

broadcast message from an SU with distance d-1, at least one neighboring SU with distance d-1 

must exist, assuming that the SUs still share a common channel and have not moved. 
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Three cases must be analyzed to demonstrate that the action selection algorithm allows SUs to 

select actions so that the messages are sent from SUs with distance d to neighboring SUs with 

distance d-1. In Table 2, the differences between the sending and listening SU distances are 

shown for each of the three cases. The sending SU’s distance is denoted by send.d, and the 

listening SU’s distance is denoted by listen.d. 

Table 2: Differences between the sending and listening SU distances 

(time /Sr ) mod 3 send.d mod 3 listen.d mod 3 send.d mod 3 - listen.d mod 3 
0 1 0 (1-0) mod 3 = 1 mod 3 
1 0 2 (0-2) mod 3 = 1 mod 3 
2 2 1 (2 -1) mod 3=1 mod 3 

In each case, the difference is 1 mod 3. This indicates that when SUs with distance send.d mod 3 

select to send, SUs with distance (send.d - 1) mod 3 select to listen. Therefore, when SUs with 

send.d values greater than or equal to 1 are sending, their neighbors with distance send.d - / will 

be listening. 

2.3.3 Two Radios 

2.3.3.1 Description 

The action selection algorithm for devices with two radios is similar to the algorithm for devices 

with one radio, with the most important difference being that the two radio action cycle has four 

actions as shown in Figure 13. The additional action is Send/Listen, which indicates that the SU 

will send and listen at the same time. 
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Figure 13: Action cyclefor CR-AHSWNs using devices with two radios 

2.3.3.2 Algorithm 

The notations for the algorithms shown in this section can be found in Table 1 in Section 2.3.2.2. 

Algorithm 4: Select an action (Send. Listen, Send/Listen, Silent, Stopped) for SU v. The SUs in 
this network have two single function radios. 

Input: time, Sr, v.dist, v.action 
Output: v.action 

1 if (time % Sr) = 0 then 
2 /* time to switch actions */ 
3 if v.done = True and v.last = True then 
4 /* SU v is done listening and has sent its last message */ 
5 v.action = Stopped 
6 else 
7 /* choose action using time and distance */ 
8 if (time / Sr) % 4) =0 then 
9 if (v.dist % 4) =2 then 
10 set_action_send() 
11 else if (v.dist % 4) =1 then 
12 set_action_send/listen() 
13 else if (v.dist % 4) = 0 then 
14 set_action_listen() 
15 else 
16 v.action = Silent 
17 
18 else if (time / Sr) % 4) =1 then 
19 if (v.dist % 4) = 1 then 

20 set_action_send() 
21 else if (v.dist % 4) = 0 then 

22 set_action_send/listen() 
23 else if (v.dist % 4) =3 then 
24 set_action listen () 
25 else 
26 v.action = Silent 
27 
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28 else if (time / Sr) % 4) = 2 then 

29 if (v.dist % 4) = 0 then 

30 set_action_send() 
31 else if (v.dist % 4) = 3 then 

32 set_action_send/listen() 
33 else if (v.dist % 4) =2 then 

34 set_action_listen() 
35 else 

36 v. action = Silent 
37 
38 else if (time / Sr) % 4) = 3 then 

39 if (v.dist % 4) = 3 then 

40 set_action_send() 
41 else if (v.dist % 4) =2 then 

42 set_action_send/listen() 
43 else if (v.dist % 4) = 1 then 

44 set_action_listen() 
45 else 

46 v. action = Silent 
47 
48 return action 

Algorithm 5: This helper function is used when the SU sets its action to Send/Listen. 

set action_send/listen(): 
1 v. action = Send/Listen 
2 if v.listen = True then 
3 /* the SU must have listened at least once before setting the 

other flag values */ 
4 if ((v.RM = [] or for all messages in v.RM last = True) and 

v. collision = False) then 

5 v.done = True 
6 if v is the sink then 
7 v. action = Stopped 
8 else if |v.SQ| = 1 then 
9 v.last = True 
10 else if |v.SQ| = 0 then 

11 v.action = Stopped 
12 v. listen = True 
13 v.RM = [] 

2.3.3.3 Example 

The CR-AHSWN shown in Figure 4 in section 2.3.2.3 is used to demonstrate the action selection 

algorithm for devices with two radios. As before, the SUs initially populate their send queues 
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with their own messages. In Figures 14 through 19, SUs that are shaded light grey are listening, 

those that are shaded dark grey are sending and listening simultaneously, and those that are 

shaded black are sending. SUs that are shaded white are silent or stopped. 

At time 0, SU C attempts to send its message to SUs A and B, as shown in Figure 14. SUs A and 

B are simultaneously listening and sending their messages to listening SU S. The SUs that are 

listening or both listening and sending set their listen flags to true. 

Time = 0 
dist: 0 
action: listen 
done: F 
listen: T 
last: F 

■ : □dist: 1 
dist: 1action: send/iisten 
action: send/listen

done: F 
done: F

listen: T 
listen: T

last: F 
last: F

RM: [] 
RM: []

SQ: [A] 
SQ: [B] 

dist: 2 
action: send 
done: F 
listen: F 
last: F 
RM: [] 
SQ:[C]

dist: 3 
action: silent 
done: F 
listen: F 
last: F 
RM: [] 
SQ:[D] 

Figure 14: Example ofaction selectionfor two radios - time 0 
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At time 4, SUs A and B have received C’s message, which they add to their send queues. Since 

this is the only message in their send queues, they each attempt to send C’s message to SU S 

during this action interval. 

Time = 4 
dist: 0 
action: send/listen 
done: F 
listen: T 
last: F 
RM.: [] 

dist: 1 dist: 1 
action: send action: send 
done: F done: F 
listen: T listen: T 
last: F last: F 
RM:[C] RM:[C] 
5Q:[C] 

dist: 2 
SQ:[C] 

action: silent 
done: F 
listen: F 
last: F 
RM: [] 
SQ: [] 

0
dist: 3 
action: listen 
done: F 
listen: T 
last: F 
RM: [] 
SQ: [D] 

Figure 15: Example ofaction selectionfor two radios - time 4 



 

                     

                    

              

       

   
  

  
  
  

  
  

  
  

 
  

  
  

 

  
  
 

  
  
  
  

  
  

  
  

  
  
  

  
  

  
  

  
  
  

            

33 

At time 8, SU D sets its done flag to true because it did not receive any messages in the previous 

listen interval. In addition, it sets its last flag to true because it has only one message in its send 

queue. During this action interval, SU D listens and simultaneously sends its message, which 

includes its last flag, to SU C. 

Time = 8 
dist: 0 
action: send 
done: F 
listen: T 
last: F 

dist: 1 
: [C] 

dist: 1 
action: silent action: silent 
done: F done: F 
listen: T listen: T 
last: F last: F 
RM: [C] RM: [C] 
SQ: [] SQ: [] 

dist: 2 
action: listen 
done:F 
listen: T 
last: F 
RM: [] 
SQ: []

dist: 3 
action: send/listen 
done:T 
listen: T 
last: T 
RM: [] 
SQ:[D] 

Figure 16: Example ofaction selectionfor two radios - time 8 
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At time 12, SU D has stopped because both its done and last flags were true. SU C has received 

Z)’s message, which was the only message that SU C received in its last listen interval. The last 

flag included with D’s message was true, so C sets its done flag to true. In addition, C’s last flag 

is set to true. In this action interval, C attempts to send D's message along with its own last flag 

to SUs A and B. 

Time = 12 
dist: 0 

Figure 17: Example ofaction selectionfor two radios - time 12 
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At time 16, SU C has stopped. SUs A and B have received £)’s message from C, along with the 

last flag. A and B set their own done and last flags to true. In this action interval, SUs A and B 

will attempt to send D’s message, along with their own last flags, to SU S. 

Time = 16 
dist: 0 
action: listen 
done: F 
listen: T 
last: F 

•: tldist: 1 dist: 1
action: action: send/listen
done:T done:T
listen: T listen: T
last: T last: T
RM: [] RM: []
SQ:[D] SQ:[D] 

dist: 2 
action: stopped 
done:T 
listen: T 
last: T 
RM: [] 
SQ: []

dist: 3 
action: stopped 
done:T 
listen: T 
last: T 
RM: [] 
SQ: [] 

Figure 18: Example ofaction selectionfor two radios - time 16 
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At time 20, SU S has received D’s message from SUs A and B. The last flag included with these 

messages is true, so S sets its done flag to true and changes its action to Stopped. The data 

gathering operation is complete. The sink SU, S, has received messages from all of the SUs in 

the network. 

Time = 20 
dist: 0 

Figure 19: Example ofaction selectionfor two radios - time 20 

2.3.3.4 Analysis 

Theorem 1 described in Section 2.3.2.4 also applies to this algorithm. 

Theorem 3: This theorem is the same as Theorem 2 described in Section 2.3.2.4: each sending 

SU has at least one neighboring SU that has a smaller best known hop distance to the sink SU. 

This is a necessary condition for transmitting messages towards the sink SU. 
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Proof: The proof for this theorem generally follows that of Theorem 2 with additional conditions 

and cases that must be analyzed. First, there are two sending actions that SUs can select in this 

algorithm: Send and Send/Listen. Each of these conditions must be analyzed with each of the 

cases. 

Table 3 shows the differences between the distances of sending SUs and sending/listening SUs 

for four cases. The distance of the sending SU is denoted by send.d, and the distance of the 

sending and listening SU is denoted by send/listen, d. 

Table 3: Differences between the sending and sending/listening SU distances 

send.d mod 4 -
(time /Sr ) mod 4 send.d mod 4 send/listen.d mod 4_send/listen.d mod 4 

0 2 1 (2 -1) mod 4 = 1 mod 4 
1 1 0 (1-0) mod4=lmod4 
2 0 3 (0-3) mod 4 = 1 mod 4 
3 3 2 (3-2) mod 4 = 1 mod 4 

In each case, the difference is 1 mod 4. This indicates that when SUs with distance send.d mod 4 

select to send, SUs with distance (send.d- 1) mod 4 select to send/listen. Therefore, when SUs 

with send.d values greater than or equal to 1 are sending, their neighbors with distance send.d - 1 

will be sending/listening. 

Similarly, Table 4 shows the differences between the distances of sending/listing SUs and 

listening SUs for all four cases. 
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Table 4: Differences between the sending/listening and listening SU distances 

send/listen.d mod 4 -
(time /Sr ) mod 4 send/listen.d mod 4 listen.d mod 4 listen.d mod 4 

0 0 (1 - 0) mod 4 = 1 mod 4 
0 3 (0 - 3) mod 4 = 1 mod 4 

2 3 2 (3 - 2) mod 4 = 1 mod 4 
3 2 (2 - 1) mod 4 = 1 mod 4 

As in Table 3, the difference for each case is 1 mod 4. When SUs with send/listen.d values 

greater than or equal to 1 are sending/listening, their neighbors with distance send/listen.d - 1 

will be listening. 

Theorem 4: Messages ard transmitted from an SU with an odd distance to an SU with an even 

distance, or, conversely, from an SU with an even distance to an SU with an odd distance. 

Proof: This theorem follows from Theorem 3. SUs with a distance d that select the Send or 

Send/Listen actions send their messages to SUs with distance d-1, therefore SUs with an odd 

distance send to SUs with an even distance, and SUs with an even distance send to SUs with an 

odd distance. This property is important for the GCM channel selection algorithm for two radio 

devices described in section 2.4.3.2. 

2.4 Channel Selection 

When an SU has determined that it will either listen or send in a time slot, it must select a 

channel to use for that action from its available channel set. In this section, two channel selection 

methods are described: random channel selection and Guaranteed Channel Match (GCM) 

channel selection. 
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2.4.1 Assumptions 

Each sending SU must always have at least one channel in common with at least one of its 

receiving SUs. If this assumption is not met, a successful data gathering is not possible. 

2.4.2 Random Channel Selection 

In the random channel selection method, each SU randomly chooses a channel from its available 

channel set for each time slot in the action interval [10]. When the channels selected by a sending 

and receiving SU pair match, and a collision does not occur, the message can be transmitted. A 

collision occurs when more than one sending neighbor of the receiving SU selects the same 

channel as the receiving SU. The messages from the sending SUs collide, and the transmissions 

are all unsuccessful. 

In Figure 20, two SUs, B and C, are attempting to send their messages to SU A. The available 

channel lists for each SU are^4: {1, 2, 3}, B\ {1, 2}, and C: (2, 3}, and the length of the action 

interval is 9. Table 5 shows an example of sending and listening channel schedules for these 

SUs. At time slot 1, SU B successfully sends its message to SU A. SU B also sends its message 

successfully in later time slots, such as 2 and 5, but only one successful message transmission is 

necessary. At time 6, SU C successfully sends its message to SU A. At time 4, all SUs have 

selected channel 2 and a collision occurs, so neither of the messages are transmitted. 

Figure 20: CR-AHSWN - random channel selection example 



 

            

         
           
           
           

     

              

                 

                

                

            

              

               

            

   

              

                 

     

              

                

                

40 

Table 5: Random channel selection examplefor the CR-AHSWN in Figure 20 

0 1 2 3 4 5 6 7 8 
A (Rx) 2 3 1 2 2 1 3 2 1 
B (Tx) 2 1 1 1 2 1 2 1 1 
C (Tx) 3 2 2 3 2 2 3 2 3 

2.4.3 Guaranteed Channel Match Algorithms 

The random channel selection method does not provide any guarantees that a sending and 

receiving pair of SUs will select the same channel in a time slot. The Guaranteed Channel Match 

Algorithms described in this section guarantee that a sending and receiving pair of SUs with at 

least one channel in common will select the same channel in at least one time slot. 

These channel selection algorithms are largely based on the broadcast channel sequence 

algorithms presented in [8], with some modifications made for the data gathering operation. Two 

separate channel sequences are required by the SUs: a sending channel sequence and a listening 

channel sequence. Therefore, two channel sequence algorithms are proposed in this section. 

2.4.3.1 One Radio 

This section presents channel sequence algorithms for devices with one dual function radio. The 

radio can switch between sending and listening, and it can perform only one function at a time. 

2.4.3.1.1 Sending Channel Sequence Description 

The sending channel sequence is created by combining M permutations of the SU’s available 

channel set, where M is the total number of channels available for devices in the CR-AHSWN. 

Each permutation must itself have a length ofM. In cases where the number of available 
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channels for an SU is less than M, the difference is made up by randomly selecting channels 

from the SU’s available channel set. The length of the sending channel sequence is then M2 time 

slots. 

2.4.3.1.2 Sending Channel Sequence Algorithm 

The notations shown in Table 6 are used in all of the GCM channel sequence algorithms shown 

in Sections 2.4.3.1 and 2.4.3.2. 

Table 6: Notationfor the GCM channel sequence algorithms 

v.C Available channels for SU v 

|v.C| The number of available channels for SU v 

v. listen_seq Listening channel sequence for SU v 

v.sendseq Sending channel sequence for SU v 

v.dist Best known hop distance between SU v and the sink SU 

M Total number of channels available in the CR-AHSWN 

In the following algorithms, the order of the channels is randomized before they are added to the 

sending and listening sequences. This process is intended to prevent collisions. If two SUs are 

attempting to send to the same receiving SU, and both sending SUs have the same available 

channel set, their sending sequences would be the same if the order of the channels is not 

randomized. This scenario would cause collisions in every time slot. Randomizing the order of 

the channels while constructing the sending and listening sequences will help prevent collisions. 

Algorithm 6 is based on a sending channel sequence algorithm presented in [8] for the broadcast 

operation. 
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Algorithm 6: Create a sending channel sequence of length M2 for SU v. The SUs in this network 
have one dual function radio. 

Input: v.C, M 
Output: v.send_seq 

1 i = 0 
2 v.send_seq = [] /*initialize sending channel sequence */ 
3 while i < M do 

4 send_rand_c = copy v.C 
5 if | send_rand_c| < M then 

6 /* create list of M channels by adding randomly 
selected channels to send_rand_c */ 

7 addtl_chans = randomly choose (M - |v.C|) channels 
from v.C 

8 append addtl_chans to send_rand_c 
9 randomize the order of send_rand_c 

10 j = 0 
11 while j < M do /* add send_rand_c to v.send_seq */ 

12 v. send_seg[ (i * M) + j] = send_rand_c[j] 

13 j = j + 1 /* repeat M times */ 
14 i = i + 1 /* repeat M times */ 
15 return v.send_seq 

2.4.3.1.3 Sending Channel Sequence Example 

SU v has the available channels set v.C = {1, 3}. M, the total number of channels available for 

this CR-AHSWN, is 3. Therefore, the sequence length will be 9 time slots. Since the length of 

v.C is 2, which is less than M, a random channel will be added to each of the M permutations of 

the available channel set. An example sending channel sequence for SU v is shown in Table 7. 

Table 7: Example ofa GCM sending channel sequence 
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2.4.3.1.4 Listening Channel Sequence Description 

The listening channel sequence is created by repeating each channel in the SU’s available 

channel set M times. If the number of available channels is less than M, randomly selected 

channels are added to the end of the listen sequence to create a total sequence length ofM2 time 

slots. 

2.4.3.1.5 Listening Channel Sequence Algorithm 

Algorithm 7 is based on a receiving channel sequence algorithm presented in [8] for the 

broadcast operation. 

Algorithm 7: Create a listening channel sequence of length M2 for SU v. The SUs in this 
network have one dual function radio. 

Input: v.C, M 
Output: v. listen_seq_ 

1 v.listen_seq = [] /* initialize listen channel sequence */ 

2 listen_rand_c - copy v.C 

3 randomize the order of listen_rand_c 

4 i = 0 

5 while i < |listen_rand_c| do 

6 7 = 0 
7 while j < M do 

8 v. listen_seq[(i * M) + j] = listen_rand_c[i] 

9 j = j + 1 /* repeat each channel M times */ 

10 i = i + 1 /* repeat for every channel */ 

11 
12 if length (v. listen_seq) < M2 then: 

13 addtl_chans = randomly select (M2 - length(v.listen_seq) ) 

channels from v.C 

14 append addtl_chans to v.listen_seq 

15 return v.listen seq 
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2.43.1.6 Listening Channel Sequence Example 

An SU, v, has the available channels list v.C = {1, 3}. M, the total number of channels available 

for this CR-AHSWN, is 3. The length of v.C is 2 and each channel is repeated M times, so the 

length of the listen schedule is 6 time slots, which is less the required length of 9 time slots. 

Therefore, 3 random channels are added to the end of the listen schedule. An example listening 

channel schedule for SU v is shown in Table 8. 

Table 8: Example ofa GCM listening channel sequence 

0 1 2 3 4 5 6 7 8 
1 1 1 3 3 3 3 3 1 

2.4.3.1.7 Message Transmission Example 

In Figure 21, two SUs, B and C, are attempting to send their messages to SU A. The available 

channel lists for each SU are: A: {1, 2, 3}, B: {1,2}, and C: {2, 3}. For this CR-AHSWN, M is 3. 

Table 9 shows sending and listening channel schedules for these SUs. At time 1, SU B 

successfully sends its message to SU A. At time 4, SU C successfully sends its message to SU A. 

At time 6, all SUs have selected channel 2, and a collision occurs. 

Figure 21: CR-AHSWN - GCM channel selection example 
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Table 9: Example ofGCM channel sequences 

0 1 2 3 4 5 6 7 8 
A (Rx) 1 1 1 3 3 3 2 2 2 
B (Tx) 2 1 2 1 2 2 2 1 1 
C (Tx) 3 3 2 2 3 2 2 3 3 

2.4.3.1.8 Algorithm Analysis 

Theorem 5: A pair of sending and receiving SUs with at least one available channel in common 

is guaranteed to select the same channel at least once in M2 time slots. 

Proof: Algorithms 6 and 7 are based on the broadcasting channel sequences in [8], so the proof 

of the channel match guarantee follows the proof provided in [8], In each set ofM consecutive 

time slots, the sending SU selects each of its available channels at least once. The listening SU 

stays on each of its available channels for M consecutive time slots. Therefore, there must be at 

least one time slot within the M2 time slots in which both SUs select the same channel. 

2.4.3.2 Two Radios 

This section presents channel sequence algorithms for devices with two single function radios. 

One of the radios is a transmitter and can only send messages. The other radio is a receiver and 

can only listen for messages. The radios can operate at the same time, so this device can listen 

for messages and send messages at the same time. However, when performing both functions 

simultaneously, the device must ensure that the radios do not select the same channel, since the 

message being sent by the transmitting radio would collide with any incoming messages at the 

receiving radio. 
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2.4.3.2.1 Sending and Listening Channel Sequence Description 

The sending and listening channel sequence algorithms are very similar to the channel sequence 

algorithms for one radio devices described in Section 2.4.3.1, with two significant differences. 

First, the algorithms ensure that the sending and listening channel sequences do not place the 

same channel in the same time slot, so a single algorithm creates the two sequences. Second, the 

lengths of the channel sequences are M x (M+l). The channel sequences are created the same 

way as the one radio channel sequences with a silent time slot added to each set ofM time slots 

The listening channel sequence repeats a channel, c, for M time slots. Therefore, in that set of M 

time slots, the sending channel cannot be channel c. The channel sequence algorithm adds a 

silent time slot before or after each set of M time slots in the listening sequence, and the sending 

channel sequence uses channel c in those additional time slots. This method prevents the sending 

and listening sequences from using the same channel in the same time slot. 

Since no messages can be transmitted during the listening channel sequence’s silent time slots, 

the sending channel sequences of the sending SUs should include matching silent time slots. The 

channel sequence algorithm also adds a silent time slot to each set of M time slots in the sending 

channel sequence. Each SU creates its own listening and sending channel sequences with the 

added silent time slots, and pairs of sending and receiving SUs must place the silent time slots in 

the same locations. 

This problem is solved by using the SU’s best known hop distance to the sink SU to determine 

whether to place the silent time slots at the beginning or the end of each set ofM+l time slots. 
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SUs with an odd distance place the silent time slot at the beginning of each set of M+l time slots 

in the listen channel sequence and at the end of each set ofM+l time slots in the sending channel 

sequence. Conversely, SUs with an even distance place the silent time slot at the end of each set 

ofM+l time slots in the listen channel sequence and at the beginning of each set of M+l time 

slots in the sending channel sequence. These sequences allow pairs of sending and receiving SUs 

to match the locations of their respective silent time slots. 

2.43.2.2 Sending and Listening Channel Sequence Algorithm 

The notation table for this algorithm can be found in Table 6 in Section 2.4.3.1.2 The sending 

and listening channel sequences created by Algorithm 8 are based on the sending and receiving 

channel sequence algorithms presented in [8] for the broadcast operation. 
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Algorithm 8: Create sending and listening channel sequences for SU v. The SUs in this network 
have two single function radios. 

Input: v.C, v.dist, M 
Output: v.listen_seq, v.sendseq 

1 v.listen_seq = [], v.send_seq = [] 

2 listen_rand_c = copy v.C 
3 if | v.C\ < M: 

4 addtl_chans = randomly choose (M-|v.C|) channels from 
v.C 

5 append addtl_chans to listen_rand_c 

6 randomize the order of listen_rand_c 

7 
8 i = 0 
9 while i < M do 

10 send_rand_c = copy v.C / listen_rand_c[i] 
11 if |v.C| < M then 

12 addtl_chans = randomly choose (M - |v.C|) channels 
from send_rand_c 

13 append addtl_chans to send_rand_c 
14 randomize the order of send_rand_c 
15 
16 7 = 0 
17 k = 0 
18 while j < M + 1 do 
19 if j = 0 and (v.dist % 2) = 1 then 

20 v. listen_seq[i * (M + 1) + j] = None 
21 v. send_seq[i * (M + 1) + j] = listen_rand_c[i] 
22 else if j = 0 and (v.dist % 2) =0 then 

23 v. listen_seq[i * (M + 1) + j] = listen_rand_c[i] 

24 v.send_seq[i * (M + 1) + j] =0 
25 else if j = M and (v.dist % 2) = 1 then 

26 v. listen_seq[i * (M + 1) + j] = listen_rand_c[i] 
27 v.send_seq[i * (M + 1) + j] = None 
28 else if j = M and (v.dist % 2) =0 then 

29 v. listen_seq[i * (M + 1) + j] = None 
30 v. send_seq[i * (M + 1) + j] = listen_rand_c[i] 
31 else 
32 v. listen_seq[i * (M + 1) + j] = listen_rand_c[i] 

33 v. send_seq[i * (M + 1) + j] = send_rand_c [ k] 

34 k = k + 1 
35 7 = 7 + 1 
36 i = i + 1 
37 return v.listen_seq, v.send_seq 
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2A.3.2.3 Sending and Listening Channel Sequence Example 

SU v has the available channels set v.C = {1, 2, 3}, distance v.dist = 4, and M = 4, so the channel 

sequence length will be 20 time slots. Table 10 shows the listening and sending channel 

sequences produced by Algorithm 8. The silent time slots are denoted with 

Table 10: Example ofGCM two radio channel sequencefor SUs with even distances 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Listen 3 3 3 3 - 2 2 2 2 - 1 1 1 1 - 2 2 2 2 -
Send - 1 2 2 3 - 3 1 3 2 - 3 3 2 1 - 1 1 3 2 

Table 11 shows the same example as above with an odd distance, v.dist = 5. 

Table 11: Example ofGCM two radio channel sequencefor SUs with odd distances 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Listen - 3 3 3 3 - 2 2 2 2 - 1 1 1 1 - 2 2 2 2 

Send 3 1 2 2 - 2 3 1 3 - 1 3 3 2 - 2 1 1 3 -

Inspection of the silent time slots in the above tables shows that when an SU with an odd 

distance is sending to an SU with an even distance, the silent time slots are located at the end of 

each set of M+l time slots. When an SU with an even distance is sending to an SU with an odd 

distance, the silent time slots are located at the beginning of each set of M+l time slots. 

2.4.3.2.4 Sending and Listening Channel Sequence Algorithm Analysis 

Theorem 6: A pair of sending and receiving SUs with at least one available channel in common 

is guaranteed to select the same channel in at least one time slot in M x (M+l) time slots. 
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Proof: Algorithm 8 is simply an extension of Algorithms 6 and 7, so the proof of Theorem 6 is 

the same as that of Theorem 5 as long as the silent time slots occur at the same time, which is 

analyzed in Theorem 7. 

Theorem 7: The silent time slots occur at the same time for sending and listening SU pairs. 

Proof: In any pair of sending and listening SUs, one SU must have an odd distance and one must 

have an even distance, as proven in Theorem 4 in Section 2.3.3.4. Algorithm 8 places a silent 

time slot at the beginning or end of each set ofM+l time slots. Tables 12 and 13 show the silent 

time slot locations. As shown in the tables, the location of the silent time slots for each pair of 

sending and listening SUs match. 

Table 12: Silent time slots when SUs with even distances send to SUs with odd distances 

Distance Action Silent Time Slot Location 
Even Sending Beginning 
Odd Listening Beginning 

Table 13: Silent time slots when SUs with odd distances send to SUs with even distances 

Distance Action Silent Time Slot Location 
Odd Sending End 
Even Listening End 
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Chapter 3: Selection of Forwarding SU Sets 

In this chapter, a method for decreasing the data gathering delay is proposed. The delay is the 

total number of time slots required for the entire data gathering operation to be completed. The 

data gathering delay can be decreased by intelligently selecting SUs to forward received 

messages to the next layer. 

Consider a pair of SU layers: layer A sends to layer B. Recall that a send interval is a consecutive 

set of time slots in which the SUs in a sending layer of SUs send a message. Define the number 

of send intervals needed for layer A to send its messages to layer B as n. The number of send 

intervals needed for layer B to send the messages it received from layer A must be at least n. 

Depending on the network topology, the receiving SUs could experience an accumulation of 

waiting messages in their message queues, which results in a larger delay. This would result in 

the number of send intervals needed for layer B to send the messages it received from layer A to 

be greater than n. 

The CR-AHSWN shown in Figure 22 demonstrates how waiting messages can accumulate. In 

this network, SU C has four messages and will attempt to send them to SUs A and B. SU D has 

two messages and will attempt to send them to SU B. Four send intervals are required to send C 

and D’s messages. If all of the messages are successfully transmitted to A and B, SU B will have 

received six messages: four messages from C and two messages from D. Therefore, six send 

intervals are required for B to transmit the messages it received. After SUs C and D have stopped 

sending messages, SU B still has two messages in its message queue that must be sent. 



 

          

                

                 

               

                 

    

               

                

              

              

                

               

   

                 

                   

                 

                   

                     

52 

Figure 22: CR-AHSWN - increase in the data gathering delay 

This accumulation of waiting messages at SU B is not necessary. SU C’s messages could be 

directed exclusively to SU A. When SU B receives messages from C, B could just drop the 

messages rather than adding them to its message queue. Then, there would be no accumulation 

of waiting messages in 5’s message queue. Both A and B would send each received message in 

the next action interval. 

The goal of the algorithms presented in this chapter is to prevent unnecessary accumulations of 

messages in the receiving SU’s message queues. In cases where a sending SU can send its 

messages to multiple receiving SUs, the sending SU should intelligently select one of the 

receiving SUs as the forwarding SU for each message. Multiple SUs could simultaneously send 

their messages to the same receiving SUs. Therefore, the forwarding SUs must be selected on a 

layer-by-layer basis in a manner that balances the number of waiting messages in the receiving 

layer’s message queues. 

The forwarding SU set selection process results in a set of forwarding SUs for each sending SU. 

Each forwarding SU in the set is the destination for a message sent by the sending SU, and the 

forwarding SUs must be used in the order that they were selected. Consider a sending SU with 

the forwarding SU set [A, B, A], where A and B are receiving SUs, The sending SU will address 

its first message to A, its second message to B, and its third message to A. When an SU receives a 
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message, it will examine the destination id field. If the destination field contains the receiving 

SU’s id, the message is added to the receiving SU’s message queue. If the destination field does 

not contain the receiving SU’s id, the SU drops the message. 

Selecting SUs to forward the data gathering messages requires knowledge of the network 

topology. In this chapter, two selection methods are described. In the first, each SU knows the 

entire network topology and can determine its own forwarding SU set. This is a distributed 

algorithm, and each SU independently selects the forwarding SU for each of its messages. In the 

second method, the SUs do not have knowledge of the network topology. Instead, this method 

uses a series of broadcast and data gathering operations to gather the required information at the 

sink SU. Then, the sink SU can broadcast the network topology or the forwarding SU set 

selections for all of the SUs to the network. 

3.1 Assumptions 

The following assumptions are required for the algorithms described in this chapter: 

1) The sending SUs and each of their selected forwarding SUs always have at least one 

channel in common. 

2) The load-balanced semi-matching algorithm used in Algorithm 10 must iterate through 

the vertices in a consistent order when creating the semi-matching. Each SU must create 

the same forwarding SU sets, so every SU must iterate through the SUs in the same order. 
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3.2 Network Topology is Known by All SUs 

3.2.1 Description 

If all of the SUs in the network have knowledge of the entire network topology, each SU can 

determine its own forwarding SU set using Algorithm 9. First, the layers of the network are 

determined, where a layer is a set of SUs with the same graph hop distance from the sink SU. 

Then, the forwarding SU sets are determined in layer-by-layer manner, starting with the layer 

that is furthest from the sink SU, using Algorithm 10. 

In Algorithm 10, each pair of sending and receiving layers is modeled as a bipartite graph. Each 

pair consists of a sending layer with distance d from the sink SU and its associated receiving 

layer with distance d-1. In a bipartite graph, the nodes are separated into two partitions, and each 

edge of the graph is adjacent to a node in each partition [13]. The nodes in the sending layer are 

placed in partition X, and the nodes in the receiving layer are placed in partition Y. 

The forwarding SU sets for the sending layers are determined by iteratively constructing semi¬ 

matchings using a load-balanced semi-matching algorithm from [14] until there are no messages 

remaining at any of the SUs in the sending layer. Consider a bipartite graph with vertex 

partitions X and 7, and edges E. In a semi-matching, each vertex in partition X is incident on 

exactly one edge in E [14]. The vertices in partition Y may be incident on any number of edges. 

In the context of the forwarding SU selections, each sending SU will send a message to exactly 

one receiving SU. The receiving SUs can receive any number of messages. 
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Each iteration of the while-loop in Algorithm 10 is models a send interval as described in 

Chapter 2. In a send interval, each sending SU sends one message from its message queue. The 

receiving SUs receive the messages and store them in their message queues. This process repeats 

until the sending SUs have sent all of their messages. 

In order to decrease the data gathering delay, the number of messages in the receiving SUs' 

message queues must be balanced. The size of a receiving SU's message queue is affected by two 

values: 

1) The number of messages received that are addressed to the receiving SU. 

2) The number of messages that are currently waiting in the receiving SU's message queue. 

The Forwarding SU Set Selection algorithm needs to take both of these values into account in 

order to balance the size of the message queues. This is accomplished in Algorithm 11 by adding 

vertices that represent each waiting message to the bipartite graph. Recall that the bipartite graph 

models a pair of sending and receiving layers; the sending SUs are in one partition, and the 

receiving SUs are in the other partition. For each message waiting in a receiving SU's message 

queue, a vertex is added to the sending partition of the bipartite graph. An edge is added between 

each "waiting message" vertex and the receiving SU where the message is waiting. These 

"waiting message" vertices represent the load that already exists on the receiving SU before any 

messages are sent in the current send interval. After the "waiting message" vertices and edges 

have been added to the bipartite graph, the load-balanced semi-matching is created. 
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The semi-matching consists of the edges selected to connect every vertex in the sending partition 

to a vertex in the receiving partition. Each sending SU is incident on one edge in the semi¬ 

matching. The receiving SU that is adjacent to a sending SU is the selected forwarding SU for 

the sending SU’s message. 

The while-loop in Algorithm 10 continues until no messages are left at the SUs in the sending 

layer. In each iteration of the while-loop, the "waiting message" vertices are added to the 

bipartite graph, the semi-matching is created, and the selected forwarding SUs are added to each 

sending SU's forwarding SU set. At the end of this process, each sending SU will have a 

forwarding SU set, with the forwarding SUs in the order in which they will be used. Then, when 

performing a data gathering, the sending SUs will use the forwarding SU sets to determine the 

destination id for each of their messages. 



  

               

          

          

           

         

            
   

          
 

               
            

          

             

3.2.2 Algorithms 

Table 14 shows the notations used in the algorithms shown in Sections 3.2.2 and 3.3.2. 

Table 14: Notationfor theforwarding SU sets selection algorithms 

G(V, E) CR-AHSWN G with vertices V and edges E 

u.dist Graph hop distance between SU u and the sink SU 

u.numjnessages The number of messages received by SU u. 

u.currjnessages The number of messages received by SU u in the 
current semi-matching iteration 

u.waitingmessages The number of waiting messages in SU ids message 
queue 

BG(X, Y, E) A bipartite graph. X is the set of sending SUs, Y is 
the set of receiving SUs, E ’ is the set of edges. 

e(u, v) A edge between SU u and SU v. 

E(u) The set of edges in E that are incident to SU u. 



 

          

     

            

           
       

 
              

   
 
               

     
  
    
 
 

 
 
 

 
 
 
 
 

          
      
      

       
  

     

      
 

  

58 

Algorithm 9: Construct the forwarding SU set for SU 5 

Input: G(V, E), SU 5 
Output: set of forwarding SUs for all messages sent by SU s 

1 Perform a Breadth-First Search to set the graph hop distance, 
u.dist, for each SU u in V 

2 
3 layers = [] /* initialize layers array to hold set of SUs in 

each layer */ 
4 
5 for each SU u in V do /* fill in layers array and initialize 

num_messages for each SU */ 
6 layers[u.dist].add(u) 
7 u.num_messages = 1 
8 
9 forwarding_selections = {} /* initialize hash table to hold the 

set of forwarding SU selections for 
each SU in the network */ 

10 
11 for i in size(layers)-1 to s.dist do 
12 layer_forwarding_selections = 

create_forwarding_selections(G (V, E), layers, i)) 
13 
14 for each set in layer_forwarding_selections do 
15 forwarding_selections.add(set) 
16 
17 return forwarding_selections[s] 



 

              

       
               

     

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

       
       

         
     
       

        
      

        
     

   

      
   

   

      
       

              
       

         
             

 

         
     

           
    
     

         
     

       
    

   

          
       

      
          

  

59 

Algorithm 10: Create the forwarding SU set selections for a layer of graph G 

Input: G(V, E), layers array, current layer 
Output: layerJbrwarding_selections, an array of forwarding SU sets for each SU in the layer 

create forwarding_selections((7(l/, E), layers, layer): 

1 X = layers[layer] /* sending SUs */ 
2 Y = layers[layer-1] /* receiving SUs */ 
3 layer_forwarding_selections = {} /* initialize hash table to hold 

the set of forwarding SUs 
for each SU in the layer */ 

4 /* get edges between X and Y */ 
5 for SU x in X do 
6 for e (x, y) in E (x) do 
7 if y.dist < x.dist then 
8 E'.add(e (x, y)) 
9 
10 for SU y in Y do 
11 y.curr_messages = 0 
12 y.waiting_messages = y.num_messages 
13 
14 while X is not empty do 
15 BG(X', Y, E'') = create_bipartite_graph(X, Y, E') 
16 M = compute a semi-matching of X to Y on BG(X', Y, E'') using 

a load-balanced semi-matching algorithm described in [14] 
17 
18 for each edge m (x, y) in M do 
19 if x is in X then /* x is a sending SU */ 
20 layer_forwarding_selections[x].add(y) 
21 
22 /* message sent from x, so decrement num_messages */ 
23 x.num_messages = x.num_messages - 1 
24 
25 if x.num_messages = 0 then /* x is done sending */ 
26 remove x from X 
27 remove E' (x) from E' 
28 
29 /* message received by y, so increment curr_messages */ 
30 y.curr_messages = y.curr_messages + 1 
31 
32 for each SU y in Y do 
33 y.num_messages = y.num_messages + 

(y.curr_messages - y.waiting_messages) 
34 
35 /* y sends a message before listening for more messages, 

so decrement and set the waiting_messages value*/ 
36 y.waiting__messages = y. curr_messages - 1 
37 y.curr_messages = 0 /* reset for the next iteration */ 
38 
39 return layer_forwarding_selections 
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Algorithm 11: Create a bipartite graph for two adjacent layers of graph G 

Input: the sending SU partition X, the listening SU partition Y, and the edges between X and Y, E’ 
Output: a bipartite graph BG(X\ Y, E”) with the waiting messages for each SU in Y represented 

by vertices added to X 

create_bipartite_graph(A, Y, E’): 

1 x' = x 
2 E" = E' 
3 
4 /* add vertices for all messages waiting in queues in Y */ 
5 for SU y in Y do 
6 for i in y.waiting_messages do 
7 create vertex y (i) 
8 X'.add(y (i)) 
9 E" . add (e (y (i) ,y) ) 
10 
11 return BG(X', Y, E") 

3.2.3 Example 

The Forwarding SU Set Selection Algorithm is demonstrated using the CR-AHSWN shown in 

Figure 23. 

Figure 23: CR-AHSWN - Forwarding SU Set Selection algorithm example 

First, the distance of each SU is determined, and the SUs are placed in the appropriate layer, as 

shown in Table 15. 
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Table 15: Layers arrayfor the CR-AHSWN in Figure 23 

Layer_SUs_ 
0 [S] 
1 [ A, B ] 
2 [ C, D, E ] 
3 [ F, G, H, I, J, K ] 

For each SU u, the initial value of u.nummessages is set to one, which represents the SU's own 

data gathering message. 

The forwarding SU sets are determined in a layer-by-layer manner, starting with the outermost 

layer. The bipartite graph for layer 3 is shown in Figure 24. The bipartite graph consists of the 

SUs in layer 3, the SUs in layer 2, and the edges between the SUs in layers 2 and 3. 

Figure 24: Bipartite graphfor layer 3 

Since each SU in layer 3 has one outgoing edge, determining the semi-matching for this graph is 

trivial; each SU in layer 3 is matched with its only neighbor in layer 2. The current 

num messages values for the SUs in layer 2 are shown in Table 16. 
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Table 16: Messages valuesfor layer 2 

SU num messages 
C 3 
D 3 
E 3 

The bipartite graph for layer 2 and its receiving layer, layer 1, is shown in Figure 25. The 

num messages value for each SU is also shown in the figure. Each of the sending SUs, C, D, and 

E, must send three messages. Each of the receiving SUs has one message waiting in its message 

queue. 

l l 

Figure 25: Bipartite graphfor layer 2 

Before the semi-matching is constructed, vertices are added to the graph for each message 

waiting at the receiving SUs. For each waiting message, a new vertex and an edge between the 

new vertex and the receiving SU are added to the bipartite graph. In Figure 26, vertex A1 

represents the message waiting at SU A, and vertex B1 represents the message waiting at vertex 

B. 

Figure 26: Bipartite graphfor layer 2’sfirst semi-matching 
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The semi-matching is constructed using a load-balanced semi-matching algorithm described in 

[14], and the edges selected for the semi-matching are shown in bold in Figure 26. Three 

messages are directed to SU A, including,4’s waiting message, Al. Two messages are directed to 

SU B, including B's waiting message, Bl. 

At the end of the first iteration, the nummessages, waitingmessages, and currmessages values 

for each receiving SU are updated. The updated values are shown in Table 17. In all of the layer 

1 message tables in this section, the values shown are the values before currjnessages is reset to 

zero in line 37 of Algorithm 10. 

Table 17: Layer 1 message values afterfirst iteration 

Receiving SU num messages waiting messages curr messages 
A3 2 3 
B 2 1 2 

The num messages value for each sending SU is decremented, and the forwarding SU set for 

each sending SU is updated. Table 18 shows these updated values. 

Table 18: Layer 2 messages andforwarding SU sets afterfirst iteration 

Sending SU num messages Forwarding SU Set 
C 2 [A] 
D 2 [A] 
E 2 [B] 

There are SUs with num messages values greater than zero in the sending partition, so another 

semi-matching is created. As in the first iteration, the bipartite graph is constructed by adding 

vertices for the messages waiting to be sent at each receiving SU. SU A has two messages 

waiting, so vertices Al and A2 are added to the graph. Edges between the new vertices and SU A 

are also added. SU B has one message waiting, so vertex Bl is added to the graph, along with an 
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edge between the new vertex and SU B. The bipartite graph for the second semi-matching is 

shown in Figure 27, and the edges selected for the load-balanced semi-matching are shown in 

bold. 

Figure 27: Bipartite graphfor layer 2’s second semi-matching 

The numjnessages, waiting messages, and currmessages values for each receiving SU after 

the second iteration are shown in Table 19. 

Table 19: Layer 1 message values after second iteration 

Receiving SU num messages waiting messages curr messages 
A 4 2 3 
B 4 2 3 

The updated num messages values and the forwarding SU sets for the sending SUs after the 

second iteration are shown in Table 20. 

Table 20: Layer 2 messages andforwarding SU sets after second iteration 

Sending SU num messages Forwarding SU Set 
C 1 [ A, A ] 
D 1 [ A, B ] 
E 1 [ B, B ] 

Sending SUs C, D, and E each have one remaining message to send, so another iteration is 

required. Each receiving SU has two waiting messages, so four vertices, Al, A2, Bl, and B2, are 

added to the graph, as shown in Figure 28. The edges selected for the semi-matching are shown 

in bold. 
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Figure 28: Bipartite graphfor layer 2’s third semi-matching 

The message values for each receiving SU at the end of the third iteration are shown in Table 21. 

Table 21: Layer 1 message values after third iteration 

Receiving SU num messages waiting messages curr messages 
A 6 3 4 
B 5 2 3 

The sending SUs' updated num messages values and the forwarding SU sets after the third 

iteration are shown in Table 22. 

Table 22: Layer 2 messages andforwarding SU sets after third iteration 

Sending SU num messages Forwarding SU Set 
C 0 [ A, A, A ] 
D 0 [ A, B, A ] 
E 0 [ B, B, B ] 

After the third iteration, the value of num messages for each sending SU is zero, so all three 

sending SUs are removed from the bipartite graph. The sending partition is now empty, and the 

selection of the forwarding SU sets for layer 2 is complete. The right column of Table 22 shows 

the forwarding SU sets for each message sent by the SUs in layer 2. 

The SUs in layer l, A and B, both send their messages to the sink SU, S. Therefore, forwarding 

SU sets are not needed for the SUs in layer 1. 
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If the Forwarding SU Set Selection algorithm was not used with this CR-AHSWN, each SU in 

layer 1 would receive and forward six messages. The SU’s must also send their own messages, 

so seven action intervals would be required. With the Forwarding SU Set Selection algorithm, A 

needs to send six messages, and B needs to send five messages. While this may seem like a small 

decrease, recall that a send interval consists of multiple time slots and that both a silent interval 

and a listen interval occur between send intervals. Preventing an unnecessary send interval could 

result in a delay reduction of many time slots. 

3.2.4 Analysis 

Theorem 8: In each iteration of the while-loop in Algorithm 10, a load-balanced semi-matching 

is constructed, where the load is defined as the number of messages in a receiving SU’s message 

queue. 

Proof: At the end of a listen interval, the number of messages in a receiving SU’s message queue 

is equal to the sum of two values: 

1) The number of messages that were already waiting in the queue at the beginning of the 

listen interval. 

2) The number of messages that were received and added to the queue during the listen 

interval. 

Each iteration of the while-loop in Algorithm 10 represents an action interval. In each iteration of 

the while-loop, vertices and edges are added to the bipartite graph. Initially, the bipartite graph 

consists of a sending SU partition and a receiving SU partition. A vertex is added to the sending 

partition for each message that is currently waiting in a receiving SU’s message queue. An edge 
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is added between each new “waiting message” vertex and its associated receiving SU. The semi¬ 

matching is then created using a load-balancing semi-matching algorithm described in [14]; the 

proofs for the load balancing property of these semi-matching algorithms are provided in [14]. 

The semi-matching algorithm provides a load-balanced semi-matching of the bipartite graph that 

includes vertices for both the waiting messages and the received messages. Therefore, the load 

that is being balanced is the number of messages that will be in the receiving SUs’ queues at the 

end of the listen interval. 

3.3 Network Topology is Determined by the Sink SU 

3.3.1 Description 

If the network topology is not known by all SUs in the network, the sink SU must gather 

messages from all of the SUs and, using these messages, construct the network topology. Then, 

the sink SU can send the network topology to the other SUs in the network. Alternatively, the 

sink SU can select the forwarding SU sets for all of the SUs in the network using Algorithm 13 

and broadcast the forwarding SU sets selections to the other SUs in the network. 

The following steps are performed to construct the network topology at the sink SU: 

1) Conduct an initialization broadcast operation as described in Section 2.2. 

2) Conduct a data gathering operation using the action selection algorithm and a channel 

selection algorithm described in Chapter 2. Each data gathering message must include a 

first_recipient field that stores the id of the first SU to receive the message. The messages 

must also include a source field that stores the id of the source SU. 
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3) After the data gathering operation is complete, the sink SU constructs the network 

topology using Algorithm 12. The network topology created by Algorithm 12 will 

include only the edges that represent a message transmission that occurs in the data 

gathering operation. Therefore, the resulting network topology will not include any 

lateral edges between SUs in the same layer. 

4) The sink SU sends a broadcast message to the other SUs in the network. This message 

contains one of the following: 

• The constructed network topology. Each SU then uses Algorithm 9 to determine 

its own forwarding SU set, as described in the previous section. 

• The selected forwarding SU sets for all nodes in the network. The forwarding SU 

sets for all SUs in the network can be determined by the sink SU using Algorithm 

13. 

3.3.2 Algorithms 

The notations for these algorithms are shown in Section 3.2.2. 

Algorithm 12: Create the network topology at the sink SU using the received data gathering 
messages. 

Input: received messages, the set of all received data gathering messages 
Output: G(V, E), a graph with nodes V and edges E_ 

1 for each message in received_messages do 
2 if message.source not in V then 
3 V. add(message.source) 
4 if message.first_recipient not in V then 
5 V. add (message. first_recipient) 
6 
7 E.add(e (message.source, message.first_recipient)) 
8 

return G(V, E) 9 
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Algorithm 13 is nearly identical to Algorithm 9 in Section 3.2.2. The sink SU uses this algorithm 

to determine forwarding SU sets for all of the SUs in the network. Therefore, this algorithm 

iterates through all the layers in the network and returns the forwarding SU sets for all of the SUs 

in the network. 

Algorithm 13: Select the forwarding SU sets for all SUs in the network 

Input: G(V, E), 
Output: forwarding selections, the sets of forwarding SUs for all messages sent by all SUs in the 

network 

1 Perform a Breadth-First Search to set the graph hop distance, 
u.dist, for each SU u in V 

2 
3 layers = [] /* initialize layers array to hold set of SUs in 

each layer */ 
4 
5 for each SU u in V do /* fill in layers array and initialize 

num_messages for each SU */ 
6 layers[u.dist].add(u) 
7 u.num_messages = 1 
8 
9 forwarding_selections = {}/* initialize hash table to hold the 

set of forwarding SU selections for 
each SU in the network */ 

10 
11 for i in size(layers)-1 to 1 do 
12 layer_forwarding_selections = 

create_forwarding_selections(G(V, E), layers, i)) 
13 
14 for each set in layer_forwarding_selections do 
15 forwarding_selections.add(set) 
16 
17 
18 return forwarding_selections 
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3.3.3 Example 

The network topology of the CR-AHSWN shown in Figure 29 will be determined using 

Algorithm 12. 

Figure 29: CR-AHSWN - construction ofthe network topology example 

The messages shown in Table 23 are received by the sink SU. 

Table 23: Messages received by the sink SU in the CR-AHSWN in Figure 29 

Message id message.source message-first recipient 
1 A S 
2 B S 
3 C A 
4 D B 
5 D A 
6 E B 
7 F C 

The sink SU uses Algorithm 12 to produce the network topology. The algorithm iterates through 

each message, adding the source and first recipient SUs to the graph’s node set and adding the 

edge between the source SU and first recipient SU to the graph’s edge set. The state of the graph 

after the first four messages are processed is shown in Figure 30. 
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Figure 30: Network topology afterprocessing thefirstfour messages 

After the network topology has been constructed, the sink SU can use Algorithm 13 to determine 

the forwarding SU sets for all of the SUs in the network. Algorithm 13 is nearly identical to 

Algorithm 9. An example of the use of Algorithm 9 is provided in Section 3.2.3. 

3.3.4 Analysis 

Algorithms 9 and 13 are nearly identical; Algorithm 9 returns the forwarding SU set for a single 

SU while Algorithm 13 returns the forwarding SU sets for all of the SUs in the network. 

Therefore, Theorem 8, shown in Section 3.2.4, also applies to Algorithm 13. 
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Chapter 4: Successful Data Gathering Ratio Algorithm 

The Successful Data Gathering Ratio (SDGR) is the probability that the sink SU will 

successfully receive messages from all other SUs in the CR-AHSWN. This is analogous to the 

Successful Broadcast Ratio described in [10]. This chapter develops an algorithm that calculates 

an estimate of the SDGR. 

In [10], the difficulty of calculating the Successful Broadcast Ratio is described. The calculation 

requires identifying all possible broadcast message propagation scenarios, which is an extremely 

challenging task. The task becomes nearly impossible for even small networks, such as a 3x3 

grid network [10]. An algorithm that simplifies the calculation of the Successful Broadcast Ratio 

is proposed in [10], and the evaluation provided in [10] shows that the algorithm’s estimates 

were reasonably close to the results obtained from simulations. 

The calculation of the SDGR suffers from the same challenges as the calculation of the 

Successful Broadcast Ratio. However, the success ratio algorithm proposed in [10] cannot be 

used to estimate the SDGR. In the broadcast operation, a single source SU sends a message that 

propagates through the network to every other SU. Therefore, an SU sends the broadcast 

message to its neighbors only once. In other words, if the network is modeled as a graph, the 

broadcast message needs to travel over an edge only once. The algorithm in [10] capitalizes on 

this property of the broadcast operation by decomposing the graph into smaller, simpler graphs. 

The graph is decomposed until the Successful Broadcast Ratio for the decomposed graph is easy 

to calculate. 
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In the data gathering operation, multiple messages use the same edges to get to the sink SU, so 

the graph cannot be decomposed into smaller, simpler graphs. Instead, the SDGR algorithm 

proposed in this section calculates the SDGR for each layer of the graph. A layer is a set of SUs 

with the same graph hop distance to the sink SU. The SDGR for the entire network is the product 

of the SDGRs of all layers in the network. 

The calculation of the SDGR for the first layer, the set of SUs that send directly to the sink SU, is 

straightforward. It is the joint probability that all SUs in the first layer successfully send their 

messages to the sink SU within a send interval. 

For the remaining layers, a recursive algorithm is used to calculate the SDGR of each layer. The 

following steps are used to calculate the SDGR of layer i, where i is greater than one: 

1) Remove all SUs that are not involved in transmitting the messages from layer i to the sink 

SU. Specifically, remove all leaf SUs in layers less than i since they are not on the paths 

between the SUs in layer i and the sink SU. Also, remove all SUs in layers greater that i. 

2) Initialize arrays that will hold the list of parent SUs for each SU in layer i-1, where a 

parent SU is an SU that sends to a receiving SU. Initialize arrays that will hold the 

probabilities of reaching the sink SU for each SU in layer i. 

3) For each SU u in layer i-1, choose a parent SU v from w’s parent list. Calculate the 

probability of parent v’s message reaching the sink SU via w. Remove v from w’s parent 

list, and add the calculated probability to v’s probability list. 

4) Remove all SUs in layer i-1 that have empty parent lists. Also, remove their leaf 

ancestors. 
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5) Repeat from step 3 until no SUs are left in layer i-1. 

6) Use the probability array for the SUs in layer i to calculate the SDGR for layer i. 

Determining the probability of a message from SU v reaching the sink SU and the calculation of 

the joint probability for the first layer require single hop probabilities. The single hop probability 

is the probability that a message successfully transmits between two SUs without collision. 

These probabilities differ based on the specific channel selection method used. Section 4.5 

describes the single hop probabilities for the random and GCM channel selection methods. 

4.1 Assumptions 

The SDGR algorithm can be used to evaluate data gathering protocols that have the following 

properties: 

1) The data gathering protocol must work in a layer-by-layer fashion as described in Section 

2.3. 

2) The channel selection method must allow the probability of a single-hop message 

transmission between two SUs to be calculated. 

The input to the SDGR algorithm is the network graph, G(V, E). Because messages are sent 

between layers, graph G(V, E) must not have any lateral edges between SUs with the same 

distance. Any lateral edges must be removed from the input graph. 



     

          

       

          

       

     

          
 

         

        

         

          

            
          

            

         

         
          

4.2 SDGR Estimate Calculation Algorithm 

Table 24 shows the notations used in the SDGR algorithm. 

Table 24: Notation for the SDGR algorithm 

G(V, E) CR-AHSWN G with vertices V and edges E 

G(V, E).sink Sink SU for CR-AHSWN G 

SDGR SDGR for CR-AHSWN G 

v.dist Graph hop distance between SU v and the sink 
SU 

layer.SR SDGR for a single layer in network G 

layer.E Set of edges for a single layer 

layer. V Set of vertices for a single layer 

layer.probabilities Array of probabilities for each SU in a layer 

layer.parents Array of parent SUs for each SU in a layer. A 
parent SU is an SU that sends to another SU. 

E(v) Set of edges in G that are incident to SU v 

e(u, v) Edge between SU u and SU v 

P(u, v)g Probability of a successful single hop message 
transmission from SU u to SU v in network G 
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Algorithm 14: Calculate the SDGR estimate for the input network 

Input: G(V, E) 
Output: SDGR estimate 

1 SDGR =1 /* initialize value */ 
2 layers = [] /* initialize array to hold set of SUs for each 

layer */ 
3 for v in V do 
4 layers [v. dist] . add (v) /* add each SU to the correct layer 

based on its distance */ 
5 
6 for i in range 1 to length(layers)-1 do 
7 if i = 1 then 

8 layer.SR = joint probability of all layer 1 SUs 
9 else 

10 /* initialize layer's data structures */ 
11 layer.probabilities = {} /* initialize hash table to hold 

probabilities for each SU in 
layer i */ 

12 layer.parents = {} /* initialize hash table to hold 
parents for each SU in layer i */ 

13 layer.V = V; layer.E = E 
14 
15 /* remove SUs that are further from the sink than i */ 
16 for j in range i+1 to length(layers)-1 do 
17 for v in layers[j] do 

18 layer.V = layer.V - v 

19 layer.E = layer.E - E(v) 
20 
21 /* initialize probabilities for SUs in layer i */ 
22 for v in layers[i] do 

23 layer.probabilities[v] = [ ] 

24 
25 /* initialize parent sets for SUs in layer i-1 */ 
26 for v in layers[i-l] do 
27 for e(v, u) in E (v) do 

28 if u.dist > v.dist then /* u is a parent of v */ 

29 layer.parents[v].add(u) 

30 
31 layer.SR = SR(G (layer. V, layer.E), i, 

layer.probabilities, layer.parents, layers) 

32 
33 SDGR = SDGR * layer.SR 

34 return SDGR 
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Algorithm 15: Recursively calculate the success ratio for a specific layer in the input graph 

Input: G(V, E), current layer, layer.probabilities hash table, layer.parents hash table, layers array 
Output: success ratio for the current layer 

SRIf/fl7, E), layer, layer.probabilities, layer.parents, layers): 

1 for r in layers[layer-1] do 
2 /* remove completed SUs */ 
3 if layer.parents[r] is empty then 
4 remove r and its leaf ancestors from G and layers 
5 
6 if layers[layer-1] is empty then 
7 return total_layer_SR(layer.probabilities) 
8 else 
9 for r in layers[layer-1] do 
10 randomly choose SU s from layer.parents[r] 
11 layer.probabilities[s].append(calculate_SU_P(s, r, 

G(V, E)) 
12 layer.parents[r].remove(s) 
13 
14 return SR(G(V, E), layer, layer.probabilities, layer.parents, 

layers) 

Algorithm 16: Calculate the success ratio for a specific layer after all SU probabilities have been 
stored in the layer.probabilities hash table 

Input: layer.probabilities hash table 
Output: success ratio for the layer__ 

totallayer_SR(layer.probabilities): 

1 P = 1 
2 for i in range 0 to length(layer.probabilities)-1 do 
3 if length(layer.probabilities[i]) == 1 then 
4 P *= layer,probabilities[i] 
5 else 
6 prob_fail = 1 
7 for j in range 0 to length(layer.probabilities[i])-1 do 
8 prob_fail *= (1 - layer.probabilities[i] [j]) 
9 P *= (1 - prob_fail) 
10 return P 
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Algorithm 17: Calculate the probability that the sending SU’s message successfully reaches the 
sink SU via the specified receiving SU. 

Input: sendsu, recsu, G(V, E) 
Output: probability that send_su's message reaches the sink SU via rec_su 

calculate_SU_P(se«</_sw, rec_su, G(V, E)): 

1 if rec_su = G(V,E).sink then 
2 return P (send_su, rec_su) G 
3 else 
4 return P(send_su, rec su)g* calculate_SU_P2 {rec_su, G(V,E)) 

Algorithm 18: Calculate the probability that the message received by rec su will reach the sink 
SU. 

Input: rec_su, G(V, E) 
Output: probability that the message received by rec su will reach the sink SU_ 

calculate_SU_P2(m?_s«, G(V, E)): 

1 neighbors = [] 
2 for e(u, r) in E(rec_su) do 
3 if u.dist < rec_su.dist then 
4 neighbors.append(u) 
5 fail = 1 
6 for n in neighbors do 
7 fail *= (1 - calculate_SU_P(rec_su, n, G(V, E))) 
8 return 1 - fail 

4.3 SDGR Estimate Algorithm Example 

The SDGR algorithm is applied to network G shown in Figure 31. The single hop probabilities 

depend on the current graph, and the subscripts G, Gl, and G2 indicate which graph is used in 

the probability calculations. As the algorithm proceeds, nodes and their edges will be removed 

from the graph, which changes the single hop probability values. 
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Figure 31: CR-AHSWN - SDGR algorithm example 

First, the layers array is populated by placing each SU into the appropriate layer: 

Table 25: Layers arrayfor the CR-AHSWN in Figure 31 

Layer_SUs 
0 [5] 
1 [ a, b, q 
2 [D, E] 

Next, the SDGR for each layer is calculated. For layer 1, the SDGR is simply the joint 

probability that messages from SUs A, B, and C reach SU S, which is denoted by 

P([A, B, C], S)G. 

Layer 2 begins by initializing the probability arrays for the SUs in layer 2, D and E. The parent 

arrays for the SUs in layer 1 are also initialized. SU A has a single parent, D, and B has two 

parents, D and E. Since C has no parents, it is removed from the network, creating graph G1 

shown in Figure 32. The parent lists for SUs A and B are shown next to the SUs. 
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Figure 32: CR-AHSWN - calculation ofthe layer 2 SDGR, first iteration 

For each SU in layer 1, an SU from its parent list is selected. For SU A, D is chosen. The 

probability that D’s message reaches the sink SU via A is calculated and stored in D's probability 

array. D is then removed from A’s parent list. Similarly, for B, E is chosen, and the probability 

that E’s message reaches the sink via B, is calculated and stored. Then, E is removed from B’s 

parent list. The current probability arrays are shown in Table 26. 

Table 26: Layer 2 probability array after thefirst recursion ofthe SDGR algorithm 

SU_Probability Array_ 

D [ P(D, A)gi x P(A, S)gi ] 

E [ P(E, B)gi x P(B, S)gi ] 

SU A’s parent list is now empty, so it is removed from the network, creating G2, which is shown 

in Figure 33. 

Figure 33: CR-AHSWN - calculation ofthe layer 2 SDGR, second iteration 
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As before, for each SU in layer 1, an SU from its parent list is selected. SU B is the only SU 

remaining in layer 1, and its only remaining parent is D. The probability of D’s message reaching 

the sink SU via B is calculated and added to D’s probability array. D is removed from B's parent 

list. 

The current probability arrays are shown in Table 27. 

Table 27: Layer 2 probability array after the second recursion ofthe SDGR algorithm 

SU _Probability Array_ 

D [ ( P(D, A)gi x P(A, S)gi ), (P(D, B)G2 * P(B, S)G2) ] 

E [ ( P(E, B)Gi x P(B, S)Gi) ] 

The parent lists for all of the SUs in layer 1 are now empty, so the total success ratio for the layer 

is calculated using the totalJayer_SR(layer.probabilities) function. This function returns the 

value shown in Equation 1. 

SDGRlayer 2 = (P(E, B)C1 x P(B, S)G1) 

x [l - ((1 - (P(D,A)G1 x P(A,S)G1) x (1 - {P(D, B)G2 x P(S,S)G2))] 1 J 

Finally, the SDGR for the entire network is the product of the SDGRs for layer 1 and layer 2: 

SDGRg = P([A, B, Cl S)G x SDGRlayer 2 [2] 

4.4 Single Hop Probability Calculations 

The single hop probability is required for calculating the probability that an SU’s message 

successfully reaches the sink SU and for calculating the joint probability that messages from all 

the SUs in the first layer will reach the sink SU. 
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4.4.1 Random Channel Selection 

The probability that a sending SU will select the same channel as the receiving SU is calculated 

as shown in Equation 3, which is obtained from [10]. In this equation, Zas is the number of 

channels that sending SU A and receiving SU S have in common. Na is the number of available 

channels for SU A, while Ns is the number of available channels for SU S [10]. 

[3] 

The probability that sending SUJ’s message will collide with the message sent by another SU at 

receiving SU S is shown in Equation 4. U is the set of SUs that send to SU S. Ui, a is the set of 

size i subsets of U that include SU A. V is an element of Ui, a, and v is an individual SU in V. Zvs 

is the number of channels that the SUs in set V and SU S have in common. Ns is the number of 

available channels for SU S, while Nv is the number of available channels for SU v. 

The probability that sending SU A’s message will be successfully transmitted to SU S within a 

send interval of Sr time slots is shown in Equation 5. 

P(A, Strand ~ 3 (l Cp(A, S')-rand. ?(y4, S)rand)) [5] 

4.4.2 Guaranteed Channel Match Channel Selection 

In the GCM channel selection algorithms, a channel match between the sending SU A and 

receiving SU S is guaranteed to occur Zas times in M2 time slots, where Zas is the number of 

channels that SUs A and S have in common. However, the message transmission could still fail 
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due to a collision. The probability of a successful message transmission between sending SU A 

and receiving SU S is shown in Equation 6. In this equation, Ca and Cs represent the available 

channel sets for SUs^l and S, respectively, while c is an element of the combined sets. Uc, is 

the set of SUs that send to SU S that have channel c in their available channel sets, excluding SU 

A. Ui, c, ^ a is the set of size i subsets of Uc, -a- V is an element of Ui, c, -a, and v is an individual 

SU in V. Nv is the number of available channels for SU v. 

'\Vc.-tA\ 

P(.A,S)gcm 1 [6]— n i 
veu
î

A Yivev Nvce(cxncs) £ = 1 

4.5 SDGR Algorithm Evaluation 

The performance of the SDGR algorithm was evaluated using simulations. These simulations 

were conducted with the following assumptions: 

1) All SUs in the network have the same available channel sets and the channel sets do not 

change. 

2) The SUs use the protocol described in chapter 2 to perform the data gathering operation. 

3) When a pair of receiving and sending SUs select the same channel and no collision 

occurs, the message transmission is successful. 

The simulations modeled only channel matching and collisions to determine if a message 

transmission was successful. Physical message transmissions were not simulated. PU activity 

was not simulated because calculation of the SDGR requires stable available channel sets. 
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This evaluation used the network shown in Figure 34. In this CR-AHSWN, the sink SU for the 

data gathering operation is SU S. 

Figure 34: CR-AHSWN - evaluation ofthe SDGR algorithm 

Table 28 shows the simulation and SDGR algorithm results for both the random and GCM 

channel selection methods. Four small channel set sizes were evaluated. In these evaluations, the 

length of the action interval is M2, where M is the size of the available channel sets. The devices 

are assumed to have one radio, so the action selection and GCM channel selection algorithms for 

one radio were used. The simulation results are the average of 100,000 trials. 

Table 28: SDGR values determined using simulations and the SDGR algorithm 

Random Channel Selection GCM Channel Selection 
Channel SDGR Percent SDGR Percent 
Set Size Sim._Alg._Diff. Sim._Alg._Diff. 

2 0.40 0.37 -7.5 0.56 0.53 -5.3 
3 0.79 0.78 -1.3 0.93 0.93 0.0 
4 0.93 0.93 0.0 0.99 0.99 0.0 
5 0.97 0.97 0.0 1.0 1.0 0.0 

These results demonstrate that the SDGR algorithm provides reasonable estimates for both the 

random and GCM channel selection methods for this CR-AHSWN. For random channel 
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selection the maximum difference between the simulation results and SDGR algorithm results is 

-7.5%, and for GCM channel selection the maximum difference is -5.3%. 
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Chapter 5: Conclusions 

5.1 Summary 

In this thesis, several distributed algorithms for both SU action selection and channel selection 

were developed for data gathering in CR-AHSWNs operating under practical conditions. 

Through theoretical proofs and examples, the correctness of these algorithms was analyzed. An 

innovative algorithm that reduces the data gathering delay was also presented. This algorithm 

reduces the data gathering delay by intelligently selecting sets of forwarding SUs for each 

sending SU. Furthermore, another novel algorithm was presented which estimates the SDGR for 

data gathering operations that use the proposed action and channel selection protocols. The 

performance of the SDGR algorithm was evaluated by comparing the algorithm’s results with 

simulation results. This performance analysis showed that the SDGR algorithm provided 

reasonable estimates of the SDGR, and the SDGR algorithm could be used to evaluate the 

performance of the data gathering operation. 

5.2 Future Work 

There are many opportunities for future research in the area of data gathering in CR-AHSWNs. 

The data gathering delay is an important performance metric for the data gathering operation. 

While a method for reducing the data gathering delay by intelligently selecting forwarding SUs 

was presented in chapter 3, other methods of reducing the delay should also be explored. In the 

GCM channel selection algorithms proposed in chapter 2, all of the channels available to the SUs 

were used. Some research has examined the use of downsized channel sets in the broadcasting 

operation with the goal of decreasing the delay with minimal effect on the success ratio [8] [9], 

The use of downsized channel sets in the data gathering operation should also be explored. 
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An analytical model that calculates estimates for both the broadcast success ratio and the delay is 

presented in [10]. An algorithm that calculates an estimate of the data gathering delay would be 

an important and useful tool. Along with the SDGR algorithm described in chapter 4, such an 

algorithm could be used for the evaluation of data gathering performance. 

The data gathering protocol proposed in chapter 2, including initialization, action selection, and 

channel selection, should be demonstrated using hardware and software simulations. The 

simulations should include physical message transmissions and PU activity. 

In addition, the results of the proposed SDGR algorithm should be compared to the results of 

additional simulations with varied network topologies and different available channel sets. 

Comparison of the SDGR algorithm results to the results of additional simulations could provide 

further verification that the SDGR algorithm estimates are reasonable. 

The security of the data gathering operation was outside the scope of this thesis, but it is a very 

important consideration for networking operations. Maintaining both the confidentiality and 

integrity of the information being transmitted through the network is already an important 

security topic in AHSWNs [15], and innovative approaches to secure the data gathering 

operation in CR-AHSWNS could be explored. 
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