
Columbus State University Columbus State University

CSU ePress CSU ePress

Theses and Dissertations Student Publications

5-2017

A Trivium-Inspired Pseudorandom Number Generator with a A Trivium-Inspired Pseudorandom Number Generator with a

Statistical Comparison to the Randomness of SecureRandom and Statistical Comparison to the Randomness of SecureRandom and

Trivium Trivium

Latoya Niesha Jackson

Follow this and additional works at: https://csuepress.columbusstate.edu/theses_dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Jackson, Latoya Niesha, "A Trivium-Inspired Pseudorandom Number Generator with a Statistical
Comparison to the Randomness of SecureRandom and Trivium" (2017). Theses and Dissertations. 353.
https://csuepress.columbusstate.edu/theses_dissertations/353

This Thesis is brought to you for free and open access by the Student Publications at CSU ePress. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of CSU ePress.

https://csuepress.columbusstate.edu/
https://csuepress.columbusstate.edu/theses_dissertations
https://csuepress.columbusstate.edu/student
https://csuepress.columbusstate.edu/theses_dissertations?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F353&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F353&utm_medium=PDF&utm_campaign=PDFCoverPages
https://csuepress.columbusstate.edu/theses_dissertations/353?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F353&utm_medium=PDF&utm_campaign=PDFCoverPages

Columbus State University

D. Abbott Turner College of Business

TSYS School of Computer Science

The Graduate Program in Applied Computer Science

A Trivium-Inspired Pseudorandom Number Generator

with a Statistical Comparison to the Randomness of SecureRandom and Trivium

A Thesis in

Applied Computer Science

by

Latoya Niesha Jackson

Submitted In Partial Fulfillment
of the Requirements

for the Degree of

Master of Science

May 2017

©2017 Latoya Niesha Jackson

11

Abstract

A pseudorandom number generator (PRNG) is an algorithm that produces a sequence of
numbers which emulates the characteristics of a random sequence. In comparison to its genuine
counterpart, PRNGs are considered more suitable for computing devices in that they do not
consume a lot of resources (in terms of memory) and their portability; they can also be used on a
wide range of devices. Cryptographically Secure PRNGs (CSPRNGs) are the only type of
PRNGs suitable for cryptographic applications. They are specially designed to withstand security
attacks. In this thesis, we provide descriptions of two CSPRNGs: Trivium, a hardware-based
stream cipher designed for constrained computing environments, and OpenJDK SecureRandom,
a traditional CSPRNG recommended for Java programs that include a cryptographic algorithm.
Our contributions are Quadrivium, a PRNG inspired by Trivium and analysis results comparing
statistical properties of SecureRandom, Trivium and Quadrivium.

Index Words: Cryptographically secure pseudorandom number generators, Lightweight
cryptography, SecureRandom, Trivium

iii

Table of Contents

Abstract. iii

List ofTables.vi

List ofFigures........vi

Chapter 1: An Introduction to Pseudorandomness. 1

1.1 Theories ofRandomness... 1
1.2 Implementing Randomness... 2
1.3 Outline. 3

Chapter 2: Pseudorandom NumberGenerators....4

2.1 Background (Definitions)..4
2.2 Fundamental Aspects ofPRNGs. 5
2.3 Desirable Properties.5
2.4 Some PRNG Algorithms.....7
2.5 PRNG Failures. .8
2.6 ScholarlyAttacks.9

Chapter 3: Cryptographically SecurePRNGs.......11

3.1 Distinguishers........ 11
3.2 Unpredictability. 12
3.3 Formalized Components. 13
3.4 Proposed Security Models. 14
3.5 Some CSPRNG Implementations.17
3.6 Lightweight CryptographicPRNGs.20

Chapter 4: Secure Random. 22

4.1 Structure. 22
4.2 Algorithm... ...22
4.3 Output...... 24

Chapter 5: Trivium. 25

5.1 Structure. 25
5.2 Algorithm.. 26
5.3 Output...... 28
5.4 Scholarly Attacks... 28

https://CryptographicPRNGs.20
https://Implementations.17
https://ofTables.vi

IV

5.5 A Generalized Model ofTrivium. .28

Chapter 6: Quadrivium..........30

6.1 Design..... ...30
6.2 Algorithm. 31

Chapter 7: Statistical Comparisons...........34

7.1 NIST Statistical TestSuite.....34
7.2 STSResults. 35
7.3 Diehard Battery ofTest. 40
7.4 Dieharder: A Random Number Test Suite. 41
7.5 DieharderResults. 42

Chapter 8:Conclusion.......44

Bibliography................ .45

Appendix A: Quadrivium.java...... .48

Appendix B: Trivium.java..........53

Appendix C: Statistical Test Descriptions.....58

V

List of Tables

Table 1. STS tests results from the best performing dataset of each generator.38

Table 2. STS tests results of all SecureRandom datasets.. 38

Table 3. STS tests results of all Trivium datasets.. 39

Table 4. STS tests results of all Quadrivium datasets. 39

Table 5. The average proportions of all generators for each STS test......40

Table 6. Summary of Diehard tests assessment.......42

Table 7. Summary of RGB tests assessments.....42

Table 8. Generation times for 122.88 millionbytes.....43

List of Figures

Figure 1. Diagram of a pseudorandom number generator.

Figure 2. Structure ofTrivium...27

Figure 3. Frequency test histograms based on the best dataset of each generator................35

Figure 4. Runs test histograms based on the best dataset of each generator ..36

Figure 5. Approximate Entropy test histograms based on the best dataset of each generator.37

Figure 6. Linear Complexity test histograms based on the best dataset of each generator.37

4

https://generator.37
https://generator.37
https://1.STStestsresultsfromthebestperformingdatasetofeachgenerator.38

vii

ACKNOWLEDGEMENTS

First, I would like to thank my thesis adviser, Dr. Yesem Peker. You have been extremely
accommodating throughout this entire process, making yourself available for guidance and
support at all times. I greatly appreciate how you welcome my creativity and visions with
enthusiasm and allowed this thesis to be my own work. This has truly been an enriching
experience for me and I owe it all to you. I would also like to extend my gratitude to the thesis
committee: Dr. Radhouane Chouchane, Dr. Rodrigo Obando and Dr. Lydia Ray. Your dedication
to learning has made this research possible. Furthermore, without your expertise or assistance,
this paper could not have been completed successfully. Again, I am grateful for your efforts. To
my dear family and friends who have always believed in me and been my personal cheerleaders,
thank you. I am almost there. Lastly, I want to give a special thanks to my sister, Shona. This
paper, this journey is as much yours as it is mine. Thank you for everything, Sis.

1

Chapter 1

An Introduction to Pseudorandomness

Randomness is defined as “the quality or state of lacking a pattern or principle of organization;
unpredictability.”1 Essentially, it is the inability to predict what will happen next even though
there is knowledge of what has happened before. Despite the chaotic disposition of randomness,
it has made itself a necessity in many orderly processes since it fosters diversity, fairness,
creation and security.

Randomness has a presence in areas such as Monte Carlo simulation, statistical sampling,
gaming, internet gambling and cryptography. Monte Carlo simulation methods employ
randomness to solve optimization, numerical integration and probability distribution problems.
In statistical sampling, randomness is used to help select arbitrary samples for analysis.
Computer-controlled characters and procedural generation in electronic gaming also uses
randomness as a source of variability. Internet gambling requires a source of unpredictability to
ensure game integrity and combat cheating. In cryptography, randomness is implemented by
generating secret keys for well-known ciphers such as AES, RSA and Blowfish; it is used to
encrypt messages for One Time Pads or to conceal information in protocols by converting the
data to seemingly random sequences.

1.1 Theories of Randomness

Across various disciplines, randomness is defined differently but there are three accepted
theories. The first theory of randomness originated in Information theory. The second theory of
randomness is rooted in the concept of universal language which is a part of computability
theory. The third theory of randomness, which is the foundation of this thesis, is based on
principles in complexity theory.

The first theory of randomness, rooted in information theory, was presented by mathematician
Claude E. Shannon in 1948. It came as a result to his model which mimics the flow of
information. The structure consists of an information source, transmitter, channel, receiver and
destination. The information source is a randomized object responsible for producing a message
or a string of messages. All messages produced are from a finite discrete set of messages. The
elements of this set are known.

Shannon was concerned with saving time transmitting a string of messages through a channel.
As a result, the transmitter dispatches a string with missing values to the receiver. Shannon
believed the receiver can reconstruct the original string from the transmitted string, statistically.
This is done by using points (messages) within the string to determine missing values. However,
this led to another concern of Shannon: quantifying the amount of uncertainty present in the
receiver reconstructing the initial string from a randomized source. In this sense, Shannon
equated randomness to uncertainty. Additionally, randomness is viewed as a probabilistic entity
since possible selected messages are restricted to an equally probable set of elements.

1 Oxford Dictionary

2

Shannon’s measure of uncertainty, entropy, is on a continuous set from zero to one. A zero
entropy value signifies that the probability of a selected message is certain. An entropy value of
one denotes the most uncertain (or perfectly random) case.

The second theory ofpseudorandomness was independently developed by Ray Solomonoff
(1960/1964), Andrey Kolmogorov (1965) and Gregory Chaitin (1969). It is commonly referred
to as Kolmogorov Complexity. Like Shannon’s information theory, Kolmogorov Complexity
proposes a practical measure of information from a random source. Contrastingly, the theory
pursues an algorithmic approach and describes, rather than quantifies, information.

Kolmogorov Complexity considers a binary string (from an information source) and defines it by
the most concise method required to reconstruct it. A more in depth perspective looks at the
method as some function; it takes an input of length x to produce y, the initial string. How far the
initial string can be compressed gauges its randomness. An initial string that can only be
described as itself lacks structure. Hence, Kolmogorov Complexity views randomness as a lack
of structure.

Unlike the first two theories, the third theory of randomness is motivated by a completely
different scenario. The first and second theories are concerned with expressing information that
shows regularity. Additionally, perfect randomness was considered extreme cases for both
notions. The third theory of randomness, pseudorandomness, seeks to express information that
achieves perfect randomness. This theory is grounded in complexity theory and views
randomness in relation to an observer’s analytical abilities. Thus, if an object appears random to
an observer then it is random. Let us demonstrate this viewpoint with a game of heads or tails
with Alice and Bob. A fair coin is used and the game proceeds under different conditions.

In the first scenario, Bob declared his choice then Alice flips the coin. Here, Bob has a
probability of one half to correctly guess how the coin lands.

In the second scenario, Alice flips the coin then in mid-air Bob declares his choice. Like the first
scenario, Bob has a fifty-fifty chance of winning.

In the third scenario, Alice flips the coin. But this time, Bob has a machine that is able to
determine how the coin will land based on its motion in air and other external effects. The
problem with this machine is it cannot compute all this information in time for Bob to declare his
choice. Bob still has a probability of one half to make a correct guess.

In the fourth scenario, Bob has an efficient machine that is able to make all the necessary
computations required to help Bob declare his choice in time. Alice flips the coin and in midair
Bob makes a call based on the prediction he received. Bob’s chances of winning in this situation
have increased making this a biased game. [GollO]

1.2 Implementing Randomness

For the applications stated in the beginning of the chapter, randomness is implemented as
nonlinear sequences comprised of binary bits. Truly random bits are very expensive and arduous
to attain. They require a physical source, which may possibly be biased and/or not available for
large scale distribution. Some examples of physical sources are radioactive decay, thermal noise

3

or atmospheric noise. PRNGs offer a more practical method to obtain “random” sequences.
According to the principles of the third theory of randomness, pseudorandom values are as
efficient as its real counterpart providing good substitutes for truly random quantities whenever
needed. Please take note that not all pseudorandom sequences are created equally. Therefore,
some values should not be used as a surrogate for truly random sequences. This holds true in the
area of cryptography. We will review various PRNG properties suitable for cryptographic
applications. Furthermore, we will use these findings to construct our own generator,
Quadrivium.

1.3 Outline

In the subsequent chapter, we will discuss pseudorandom number generators, its general
structure, fundamental aspects, and other relative information pertaining to PRNGs. We will look
at a special type of generators, cryptographically secure PRNGs in chapter three. We will also
discuss the factors that discriminate between a non-cryptographic generator and a cryptographic
generator. Chapters 4 and 5 give a description of OpenJDK SecureRandom, the official
CSPRNG implementation of Java SecureRandom Class and Trivium, a stream cipher whose
keystream may be used as a CSPRNG, respectively. Our contributions will be presented in the
sixth and seventh chapters. First, a description of our Trivium-based PRNG, Quadrivium, will be
provided. Then, we will show analyses of OpenJDK SecureRandom, Trivium and Quadrivium.

4

Chapter 2

Pseudorandom Number Generators

2.1 Background (Definitions)

Before we proceed, there are some standard definitions we will first discuss regarding
pseudorandom number generators.

Definition (discrete probability distribution) Given a discrete set of random variables, a
discrete probability distribution is a function denoting the likelihood of random variable n
occurring in an event such that the sum of all probabilities of all n in the set equals one.

Definition (discrete uniform distribution) A discrete uniform distribution is a probability

distribution such that on a finite set of n variables, the occurrence of any variable is^.

Definition (probability ensemble) Let Xn be a probability distribution. An ensemble X is a
sequence of probability distributions such that

X {Xn}n, where n e N.

Definition (uniform ensemble) Let Un be a discrete uniform distribution over the set {0, 1}". A
uniform ensemble U is defined as

U := [Un}n, where neN.

Definition (pseudo-random number generator) The algorithm <g is a pseudorandom number
generator if

§ := {o,ir^{o,ir\
where m«n and is (t, ^-computationally indistinguishable from U, for some large t and
negligible 8. We will see in later in this chapter what it is meant to be “computationally
indistinguishable.”

Figure 1. Diagram of a pseudorandom number generator.

5

2.2 Fundamental Aspects of PRNGs

There are three fundamental aspects of pseudorandom number generators: the generating process,
relative distinguishers and computational complexity. The first aspect pertains to the basic
components that make a PRNG function. Relative distinguishers pertain to objects used to
differentiate pseudorandom quantities from truly random quantities. Lastly, computational
complexity is concerned with the hardness of the generating algorithm. [GollO]

The generating procedure of a PRNG requires an algorithm, a seed and an output. The seed is
typically a small quantity of truly random bits. The algorithm takes the seed and outputs a longer
sequence ofpseudorandom bits. (Refer to Figure 1.)

Distinguishers are any algorithm or code capable of discriminating between pseudorandom
quantities and truly random quantities. Consequently, they are viewed as challengers to PRNGs.
Due to their range and depth of abilities (prediction, time efficiency, etc); distinguishers are
partitioned into varying classes. The quality of a generator is gauged by the types of
distinguishers it can withstand. (Quality encompasses predictability, randomness and periodicity
of the pseudorandom outputs.) Additionally, distinguishers run in polynomial time and may be
more algorithmically complex than the generators they challenge. This aspect is associated with
the desirable property of indistinguishability.

Computational complexity relates to resources used to solve or understand the workings of the
generating algorithm. It is similar to algorithmic analysis but focuses more on resource
availability. Given a restricted number of resources, how difficult is it to analyze an algorithm.
On the other hand, algorithmic analysis considers the number of resources required to analyze an
algorithm. The type of resources here are time and memory storage, or in other words, the time
complexity and space complexity. It is greatly desired that the generator operate in polynomial
time.

2.3 Desirable Properties

Desirable properties of a PRNG include indistinguishability, efficiency and a long period.
Indistinguishability may imply that in a pseudorandom sequence there are as many Os as Is and
00s as 11s; each bit has equal occurrence probability; sequences of bits have equal probability,
the next bit is unpredictable or the next sequence is unpredictable [Shelat], This property
benchmarks the depth of randomness of a PRNG. Efficiency denotes how fast a PRNG produces
pseudorandom quantities. A period is the complete set of outputs a PRNG produces before
repetition occurs.

2.3.1 Computational Indistinguishability

Computational (polynomial-time) indistinguishability is a complexity theory concept that
describes a particular relationship between two probability distributions. The notion asserts that
two distinct probability distributions are computationally indistinguishable if they cannot be told
a part by some discriminating method in polynomial time. [Gol90]

6

Definition (computational indistinguishability) Let X {Xn}neW and Y ■= {Fn}neM be
probability ensembles over {0, \}m and/ some function. X and Y are (t, s)-computationally
indistinguishable if for every/that is computable in time t,

IPr[f (X) — 1] — Pr[f(F) = 1] | < e, for some negligible value £ .

Definition (pseudorandom ensemble) Let X := {An}neN be a probability ensemble and
U == (f/n}neM be a uniform ensemble. X is a pseudorandom ensemble if it is computationally
indistinguishable from U.

There are various methods involved to launch an attack on PRNGs. Computational
indistinguishability is more concerned with the time factor involved in discriminating
pseudorandom outputs from truly random outputs. The theory restricts these methods to the
computational resources available for an attack. It assumes that an adversary only possess time
efficient algorithms to launch an attack.

An algorithm is said to be time efficient if it operates in the same manner as a probabilistic
polynomial-time Turing machine. Probabilistic polynomial-time Turing machines consist of the
basic operations of a Turing machine but have an additional writing instruction. At each point,
the machine can select a random variable to write based on the probability distribution under
scrutiny. In actuality, this machine has an internal random selection process to make such
decisions. This only explains the probabilistic nature of the computing system. As for the
polynomial-time characteristic, the maximum number steps required to compute an input of
length n can be expressed as a polynomial. If a PRNG can resist any time efficient algorithmic
attack then, by computational indistinguishability, it is a sufficient random generator substitute.
[Roe05]

2.3.2 Statistical Indistinguishability

Aside from computational indistinguishability, there exists a notion called statistical
indistinguishability. The two differ in that one is grounded in polynomial time algorithms and the
latter derives from data collection and analysis.

Definition (statistical indistinguishability) Let X ■= {An}neM and Y ■= {Fn}nep<i be probability
ensembles in {0, 1}"! and 5 be some statistical test. X and Y are statistically indistinguishable if
for every 5 that is computable in time t,

max 15(A) — 5(F) I < £, for some negligible value e .
S£{0,l}m

In Goldreich’s “A Note on Computational Indistinguishability,” the author made some crucial
deductions about the related concepts [Gol90], One, statistical indistinguishability implies
computational indistinguishability. Two, the converse statement is not always true. Furthermore,
statistical indistinguishability is superior to computational indistinguishability. For that reason, it
is fair to say that statistical indistinguishability is a more desirable property of a PRNG compared
to computational indistinguishability.

Statistical indistinguishability suggests two probability distributions are similar if the statistical
distance between the two is insignificant. Its formal definition is analogous to that of

7

computational indistinguishability but the functions represent some arbitrary statistical tests.
Later in this literature, we will see the importance of this type of indistinguishability; many
standard testing for randomness quality are influenced by statistical elements.

2.3.3 Efficiency and Periodicity

The desirable property of efficiency, in this case, refers to time complexity. For some tasks, like
stream ciphers, simulations and protocol masking, a PRNG must produce rapidly. The reason
being these tasks require random outputs of sizeable lengths. Efficiency and robustness usually
do not pair well in a PRNG. Robust PRNGs demand highly complex algorithms which in turn
lowers the PRNGs speed. [Roe05]

The importance of a long period is trivial. Remember von Neumann’s middle square method.
One of its limitations was that the outputs cycled over in a short space of time. A shorter period
enables an attacker to fully grasp the workings of the internal state of a PRNG. This results in an
effortless attempt to predict the past and future random outputs.

2.4 Some PRNG Algorithms

Pseudorandom generators can be traced back to 1951 with John von Neumann’s middle square
method. The algorithm produces a sequence by first taking an n-length sequence as the input
value. That number is squared to obtain a 2«-length number; leading zeroes are added to meet
the required length. Then, the middle n-digits are extracted. To generate the next sequence, the
extracted n-length sequence is used as the input value and undergoes the aforementioned steps.
The middle square method is not an ideal generator since there are some sequences, if taken as
the initial value, will produce an all zero sequence. Once this occurs, all future sequences will be
all zeroes. Additionally, the sequences cycle over in a very short period of time. [Von 51]

2.4.1 Linear Congruence Method

This generator employs a piecewise linear equation to return random outputs. The construction
of the method is simple and comprises of four values: an initial value, a multiplier, an increment
and a modulus. The initial value, multiplier and increment are greater than or equal to zero; the
modulus is strictly greater than the aforementioned numerals. The algorithm goes as follows:

Xn+1 — (aXn + b)mod c,

where A is a pseudorandom sequence, a is the multiplier, b is the increment and c is the modulus.

First, the product of the multiplier and the initial value are added to the increment. The result
from the previous operation undergoes a modular arithmetic: result (mod modulus). The result
from this operation yields a random output. To obtain the next random sequence, the current
random sequence is used to initialize the generator. Additionally, when the increment equals zero,
the algorithm is called a multiplicative congruential method; when the increment does not equal
zero, the algorithm is called a mixed congruential method. [Xiannong]

8

2.4.2 Mersenne Twister

Generators that use linear recurrences are simple in nature. These generators are needed for
applications where the predictability of outputs is not important. With this technique, each output
is dependent on the previous output. These generators can be further categorized by their core
algorithms. Feedback shift register is a subtype of linear recurrences. It is a shift register whose
input bit is a transformation of its previous state. The main function is an exclusive or on
individual bits. Feedback shift registers can be linear or twisted.

In 1997, Japanese mathematicians Makoto Matsumoto and Takuji Nishimura revealed the
Mersenne Twister, a PRG that produces ideal random numbers at a fast generation rate. The
generator is the most widely used PRG for general usage. The first part of the generator’s name
refers to its large period of 2199937 - 1, which is one of the largest Mersenne Primes. The Twister
component refers to the algorithm being a modified version of the Twisted Generalized
Feedback Shift Register (TGFSR) [Jag 08], TGFSR employs a linear recurrence equation in
which the initial seed does not affect the quality of the random outputs, larger periods and greater
speed than previous PRGs [MK 92], The Mersenne Twister “takes an incomplete array to realize
a Mersenne prime as its period and uses an inversive-decimation method for primitivity testing
of a characteristic polynomial of a linear recurrence with a computational complexity of 0(p2)
where p is the degree of the polynomial” [Jag 08]. Moreover, random outputs from the algorithm
appear to be uniformly distributed in 623 dimensions.

2.4.3 Xorshift

This pseudorandom generator was developed in 2003 by American mathematician George
Marsaglia. (He is also the creator of Diehard Battery of Tests, a statistical testing suite for
PRNGs.) Xorshift is a subset of linear feedback shift registers. Random outputs are created by a
recursive mechanism which XORs a binary bit sequence with an n-bit shifted version of itself.
The algorithm is notably fast and produces computationally indistinguishable random numbers.
[Mar 03]

2.5 PRNG Failures

Some PRNG failures are attributed to the lack of entropy or how entropy is acquired within a
system. Entropy is a collection of sources employed to update the internal state of a PRNG.
Examples of sources include mouse movement, keystroke timing and noise from the system’s
soundcard. In what manner entropy impacts a generator varies between constructs. In the case of
Linux /dev/random, a PRNG, the amount of entropy determines if the generator is fit for
operation. An inadequate entropy level halts /dev/random from yielding outputs. Other failures
may be based on short periodicity or linear complexity of the generating function.

Additionally, PRNG failures can be attributed to the limited knowledge on how different
constructions staunchly affect the quality of computed outputs. No matter how strong a
cryptosystem may be, its security is directly proportionate to the strength of its PRNG. Countless
cryptosystems employ pseudorandom generators that are poorly designed. If that is not the case,
the system implements the generator in such a way that makes the PRNG prone to failure.

9

Debian experienced a security breach with its OpenSSL distribution. The pseudorandom
generator included in the implementation was incapable of acquiring high levels of entropy. This
caused the PRNG to produce 32,767 distinct private keys. The small key space ensue highly
predictable keys. Other Debian-based products, like Ubuntu, were affected by this PRNG failure.
[Debian]

Another entropy-based case involves the internationally used MIFARE Classic chip. It has
applications in contactless smart cards and proximity cards. Various academic attacks have been
carried out on the chip to reveal its vulnerabilities. In a 2008 paper by de Koning Gans,
Hoepman and Garcia, the authors disclosed weaknesses in the MIFARE Classic chip PRNG. The
researchers were able to recover keystreams, read memory blocks and modify memory blocks
from the chip. This was all due to the low entropy collecting PRNG implemented in MIFARE.
[dHG08]

Security Socket Layer (SSL) uses a PRNG to generate a random key. The key is used in a
cryptographic algorithm to encrypt information flowing between client and server. Netscape
utilized its own implementation of SSL to protect transmission of sensitive data over its browser.
However, two computer science students were able to decipher encrypted messages sent over
Netscape Web. They uncovered flaws in the PRNG used in the Netscape SSL implementation.
Encrypted messages became recoverable due to the three values that seeded the PRNG. The
values —taken from the running system— are the process ID, the parent process ID and the time
of day. These values are indeed unique but still predictable, hence, the key was retrievable as
well as the messages. [GW96]

Shortly following a publication which analyzed the security of popular SecureRandom constructs,
a Bitcoin incident occurred leaving its Android users vulnerable to theft2 [MMS13], The two
events are related in that SecureRandom is a special PRNG for cryptographic applications and
Android uses it for cryptographic Bitcoin procedures. However, the Android SecureRandom
implementation had a bug that caused the generator to yield predictable sequences. The paper
revealed how the generator produced colliding values—making the private key recoverable. The
paper also discussed the PRNG’s defects in entropy collection and the capability to overwrite the
seed value.

2.6 Scholarly Attacks

From the PRNG failures aforementioned, we see that the information gained led to the recovery
of the encryption key. This allowed the “attackers” to decrypt secret messages or have access to
private data. Key recovery is not the only concern for PRNG failures. There also exists the
possibility of influencing the output of a PRNG or acquiring knowledge of the internal state. If
an attacker knows the internal state of a PRNG then the attacker is capable of predicting future
outputs. In "Cryptanalytic Attacks on Pseudorandom Number Generators" [KSW+98], the work
outlined some possible attacks on PRNGs to obtain the information aforementioned. We will
limit our discussion to attacks stated in this paper. There are other documents available detailing
additional attacks.

2 https://bitcoin.org/en/alert/2013-08-l 1-android

https://bitcoin.org/en/alert/2013-08-l

10

The first attack described in [KSW+98] is the Direct Cryptanalytic Attack. The name stems from
the adversary’s ability to directly observe computed outputs, therefore, permitting the adversary
to make distinctions between truly random values and generated random values. Outputs from
the observed PRNG are collected. Consequently, the internal state is learned leading to
possibility of predicting future outputs. Most PRNGs are vulnerable to these attacks since their
outputs can be accessed during the transmission stage or other processes. Triple-DES PRNGs,
for example, are not affected by the direct cryptanalytic attack because the generated key is
protected under obscurity.

Another possible attack defined in the paper is the Input-Based Attack. This class of attacks is
possible if an adversary can use the knowledge of PRNG inputs or manipulate the inputs to
determine the next bit. Input-Based Attacks consists of three types: known input, chosen input
and replayed input. Known Input-Based Attacks are based on inputs that, contrary to the belief of
the PRNG author, are predictable to an attacker. For example, generators that use inputs sourced
from disk latency are vulnerable. There is the possibility that the attacker can retrieve data about
the timings. Adversaries that have knowledge of the inputs and outputs of the generator
characterize the Chosen Input-Based Attack. This attack pertains to systems that utilized user-
based inputs, known plaintext messages or network data as a source of entropy [KSW+96]. The
attacker extracts information about the PRNG via the known data or adversary-selected data fed
to the generator. The input-output pairings aid in learning about the internal state of the generator.
The Replay Input-Based Attack is quite similar to the Chosen Input-Based Attack. This attack is
only restricted to known inputs or inputs supplied by an external source. The adversary has no
control on the entropy given to the PRNG.

State Compromise Extension Attacks occur when an adversary further exploits a compromised
system. The adversary has already recovered the internal state of the PRNG and uses that to its
advantage to recover outputs prior to the time since the system has been compromised.
Furthermore, the attacker can predict or has adequate knowledge about future outputs. This is
possible under the condition of a security breach, successful cryptanalysis or an unintentional
data leak. State Compromise Extension attacks can be executed in various ways. One is termed
the Permanent Compromise Attack. This occurs once the internal state has been learned resulting
in an irreparable collapse of the PRNG. Both forward and backward secrecy no longer hold.
Iterative Guessing Attack occurs when unknown but predictable PRNG inputs are collected at
different points of time to learn the current state of the PRNG after a state compromise.
Backtracking Attacks use the knowledge of the internal state at some arbitrary point of time to
foretell future outputs. State Compromise Extension Attack is also possible under the condition
in which a PRNG is initiated from low entropy. Another condition is if the internal state has been
successfully covered from a Direct Cryptanalysis Attack or one of the Input-Based Attacks. The
Meet-in-the-Middle attack coalesce principles from the Iterative Guessing Attack and the
Backtracking Attack. With knowledge of a past compromised state and a future state, an attacker
can specify the current state of a PRNG.

11

Chapter 3

Cryptographically Secure PRNGs

In cryptography, Kerckhoffs principle, which is also considered an axiom or law in the field, is
the concept that a cryptosystem must maintain its security even if it falls into the hands of an
adversary. In other words, an attacker may have an encrypted message in his possession and is
knowledgeable of the encoding function used; however, the secrecy of the message will not be
compromised. This is only possible if the key remains unknown. To ensure such secrecy,
cryptographers use random numbers as keys. Random numbers are a reliable source of
unpredictability; it is quite difficult for an attacker to recover a randomly selected key, especially
if it is drawn from a large pool.

Weaknesses in the random generation process directly affect the strength of cryptographic
algorithms and cause them to be susceptible to attacks. The only type of PRNGs that is suitable
for cryptographic applications is CSPRNG, cryptographically secure pseudorandom number
generator. It has the core components of a PRNG—a seed, generating function and
pseudorandom output— as well as two additional components: an entropy source and an internal
state. Entropy, as defined earlier, is the measure of disorder. Entropy sources add disorder to a
generator and in turn aid in the quality of the random outputs as well as refresh the internal state.
The internal state comprises of all stored values, such as parameters and variables, which a
CSPRNG relies on to function.

Non-cryptographic pseudorandom number generators and cryptographically secure
pseudorandom number generators essentially perform the same task: provide seemingly random
data for applications in need. Outputs from the two can be used in domains such as gaming
theory, approximation algorithms, counting problems in addition to property testing. However,
only CSPRNGs can be used for cryptographic applications. Discriminating factors between the
generators can be summed up in two notions: strength of distinguishes and unpredictability.

3.1 Distinguishers

The existence of distinguishers plays a significant role in categorizing PRNGs. As was discussed
in the previous chapter, distinguishers are challengers of pseudorandom number generators.
Some distinguishers are more complex than others and may have the ability to correctly predict
the outputs of a pseudorandom number generator. The types of distinguishers a PRNG can
withstand, determines if a PRNG is suitable for cryptographic applications.

The basic class of distinguishers describes probabilistic polynomial-time algorithms. First,
polynomial-time algorithms are processes that can be completed in polynomial-time, or in other
words, speedily. Probabilistic algorithms are procedures that have a built-in random process and
use the result to make decisions. These types of distinguishers can decide if a sequence was
taken from a set of purely random sequences or a set of pseudorandom sequences. These
distinguishers are related to the notion of computational indistinguishability. Both cryptographic
and non-cryptographic PRNGs have this property. [G0IO8]

12

Another class of distinguishers is a set of statistical tests or statistically inclined algorithms. They
examine pseudorandom sequences and declare if they exhibit expected behaviors of random
sequences. Random sequences are said to have uniform distribution of all probable events—in
most cases, binary bits. NIST STS, Diehard battery of tests and Dieharder, for short, are
collections of statistical distinguishers. We will further discuss these collections of distinguishers
in chapter 7.

Space bounded distinguishers are challengers that do not rely on computational assumptions.
They are time bounded procedures with restricted space complexity. These distinguishers are
limited in capability and function in an automata-like fashion.

3.2 Unpredictability

Non-cryptographic generators are created under a weaker assumption. They are only required to
be statistically and computationally random. This means they only need to be indistinguishable
from random by statistical properties and in polynomial time. Cryptographic generators must
possess an additional property, unpredictability. [Stal 1]

CSPRNG outputs serve as keys for cryptographic algorithms. The security of the keys relies on
their random selection. CSPRNG outputs are deemed secure because their values are
unpredictable. Also, the outputs do not reveal any information about the inner workings of the
generator. In contrast, non-cryptographic PRNG sequences may exhibit patterns or behaviors
disclosing the mechanism of its generating algorithm. Since CSPRNG outputs reveal no
information, even in the event that the current sequence (or key) is known, it is impossible to
uncover future or past sequences.

Unpredictability guarantees pseudorandom values produced by a generator lacks structure,
cannot be controlled nor conform to some pattern. Unpredictability does not equate to true
randomness but is another form of randomness that entails high entropy. It is considered more
practical than perfect randomness—which is not accessible for all systems [Dodis].
Unpredictability implies that given a sequence with known bits by bi, it is computationally
infeasible to calculate bi+1 — bj+„, with a probability significantly greater than one-half. [PP10]

The next-bit test is based on the concept of unpredictability. It is a “complete statistical test” in
that if a pseudorandom sequence passes this test, it will definitely pass ah other randomness
quality tests [Shelat], A sequence passes the next-bit test if an attacker —at most— can predict
the next generated bit with a probability insignificantly greater than one-half. This test assumes
that an attacker has knowledge of some or all of the previously generated bits. The probability
index is a derivation of a truly random sequence probability distribution. The formal definition of
the next-bit test is as follows:

Let pseudorandom sequence Xbe on {0, 1}"', time t e N and s be some arbitrarily small number. X
is (t,s) next-bit unpredictable if for every probabilistic algorithm A running in t and for all i,

1
Pr[A{x1x2—xi) = xi+1] < - + s.

13

Note: The next-bit test is abstract. No tangible procedure currently exists. It is also evident the
test parallels the principle of unpredictability. The property of unpredictability assures whether
or not a PRNG is safe for cryptographic applications.

All pseudorandom quantities do not possess the same standard of quality. Therefore, restrictions
must be made on where they may substitute random sequences. It is fair to say, that
cryptographically secure pseudorandom number generators may be used wherever random
quantities are needed. They are computationally infeasible like true random-producing objects.
However, non-cryptographic generators are limited in use. This is attributed to the existence of
distinguishes and their lack of unpredictability. Even though cryptographically secure
generators can be used anywhere, it need not be used everywhere. They are only needed when
unpredictability is the main concern of the requesting application. In cases where
unpredictability is not a necessity, a standard generator will suffice.

3.3 Formalized Components for CSPRNGs

3.3.1 RFC4086

The Internet Engineering Task Force’s RFC4086 is a publication that outlines and is titled,
“Randomness Requirements for Security.” The article serves as a guideline for constructing
random generators resistant to cryptanalytic attacks and safe to use in cryptosystems. RFC4086
is a revamped version of the obsolete RFC 1750. Unlike its predecessor, RFC4086 provides
additional information on various entropy definitions and methods (Renyi entropy, minimum
entropy and entropy pool techniques); mixing functions using S-boxes; as well as a listing of
additional sources of randomness.

The authors were motivated to write this document because of several issues that cause
debilitating affects to cryptographic software. The affects leverage the probability of guessing or
determining data to be more advantageous to an attacker. One set of attributes is the absence of
tmly random or unpredictable resources. Cryptographic software (like SSH, IPSEC and PGP)
typically selects random quantities that only adhere to traditional statistical requirements; or are
obtained from a small set of random values or easily calculable resources. Another cause for the
authors to create this document was the difficulty to construct a generator that is compatible with
a diverse selection ofhardware.

Some possible solutions described in the text were hardware-based entropy sources, de-skewing
methods and endorsed mixing functions. Hardware-based entropy sources suggested for seeding
a PRNG are thermal noise, radioactive decay, ring oscillators, audio and video input device,
spinning disks as well as crystal time sources. The authors further explained that in order for
these entropy sources to be available, computer vendors must first integrate them in their
products. De-skewing relates to transforming a random output (of bits) such that distribution of
zeroes and ones are symmetrical. Some of the methods suggested for de-skewing are using
stream parity, transition mappings (a technique introduced by John von Neumann) and
compression. Lastly, mixing is used to help compensate for the lack of hardware-based entropy
sources available in a computing system. An entropy preserving algorithm is used to mix entropy
quantities drawn from unrelated sources and produce a strong seed. A robust mixing algorithm is

14

defined as a process “that combines inputs and produces an output in which each output bit is a
different complex non-linear function of all the input bits” [RFC4086].

The article also claims that cryptographically secure random outputs are first built on a strong
seed; subsequent steps following seed generation must also be cryptographically secure and the
complete state of the generator must be kept private. The authors stated that the correct technique
for producing cryptographically secure random sequences is founded on these two principles.

3.3.2 FIPS PUB 140-2 (Security Requirements for Cryptographic Modules)

This publication provides a standard for cryptosystems used by U.S. Federal organizations or
affiliated organizations working with sensitive federal data. There are eleven sections with
requirements differing over four levels of security. The sections include “cryptographic module
specification; cryptographic module ports and interfaces; roles, services, and authentication;
finite state model; physical security; operational environment; cryptographic key management;
electromagnetic interference/electromagnetic compatibility (EMI/EMC); self-tests; design
assurance; and mitigation of other attacks” [FIPS 01].

One of the most significant security area described, pertaining to CSPRNGs, is section 4.9 Self-
Tests. CSPRNGs are subjected to two tests: power-up self-tests and conditional self-tests. Power
up-self tests are system-automatic assessments carried out whenever the generator is initialized.
There are few types of power-up tests available for CSPRNGs but the “cryptographic algorithm
test” is the most relevant. This test confirms the correctness of a generating algorithm. Specific
sequences, whose outputs are known, are used to seed the generator. Then, the random value
produced during the assessment is compared to the expected output. Like power up-self tests,
conditional self-tests also include various assessments. “Continuous random generator test” is the
most appropriate for CSPRNGs. The test checks if the first random quantity produced is equal to
the next generated quantity. If the two are equal, the generator failed the test.

3.4 Proposed Security Models for CSPRNGs

3.4.1 Barak-Halevi Model

Barak and Halevi in 2005 introduced a new security criterion called robustness and stated that
this is a key property for any cryptographically suitable PRNG [BH05]. Once robustness is
present, resiliency, forward security and backward security are also present. Principally,
robustness gauges the security of a PRNG after a state compromise;3 Robustness indicates if a
generator is capable of upholding the three security properties aforementioned. Resiliency,
forward security and backward security were formulated from research describing various
advantages an adversary may have when trying to attack a PRNG. The advantages are as follows:
the adversary has access to the random output; the adversary can influence the entropy source;
and the adversary can manipulate the generator’s internal state. The attacker may have only one
or a combination of the advantages noted. A game playing framework based on [BR06] and

3 State compromise refers to the corruption or manipulation of the internal state of a generator by an external source.

15

[DPR+13] will be used to gain a better understanding of robustness by illustrating its security
through forward secrecy, backward secrecy and resiliency games.

Games are programs with three types of methods: initialization, oracles (a set of individual
methods) and finalization. The oracles consist of the following methods: refresh which refreshes
the current state of the PRNG, getNext which gets the next random quantity from the PRNG,
getState which gets information on the current state of the PRNG and setState which sets the
state to a value chosen by the adversary. Calls are made to the oracles by the adversary, which is
also a program.

The game begins by invoking the initialization method. The outputs are passed to the adversary.
The adversary takes these outputs and makes calls to an arbitrary number of oracles. The
adversary then returns a final value to the finalization method. Lastly, the finalization method
returns a value. This is the output of the game and marks the end as well.

Resilience is an attacker’s inability to predict future outputs even if the entropy source—whose
purpose is to update the internal state of the generator—is compromised by input by the attacker.
The adversary has no information on the internal state of the generator. In a resiliency game, the
adversary makes no calls to the getState or setState methods.

In forward secrecy, an adversary cannot predict past outputs even if he can influence the internal
state of the PRNG. The adversary is restricted from making calls to the setState method. It can
only invoke the getState method once. This call is the final call made by the adversary.
[DPR+13]

Reversely, backward secrecy is the inability to predict future outputs after an internal state
compromise. During a backward secrecy game, the adversary does not invoke the getState
method but makes only one call to the setState method. This is the initial oracle call made by the
adversary. The output returned by the finalization method should demonstrate full recovery from
the attack. That is to say, the output should be unpredictable after this state compromise.

Robustness entails all the aforementioned security criteria. Principally, robustness gauges the
security of a PRNG after a state compromise; it indicates if a generator was able to uphold the
standards of resilience, forward secrecy and backward secrecy. In a robustness game, an
adversary can make calls to all of the oracles.

Note: In all games, the adversary may make calls to the refresh and getNext methods.

3.4.2 DPRVW Model

Dodis, Pointcheval, Ruhault, Vergnaud and Wichs extend the security model proposed by Barak
and Halevi by including a new security property informally called entropy accumulation
[DPR+13], According to the researchers, this property is the critical concept used to strengthen
the robustness notion proposed by Barak and Halevi. Entropy accumulation describes how
entropy, the measure of disorder (randomness), should be collected over a period of time while a
PRNG is in operation. In common practice, PRNGs try to accumulate high entropy in one
instance— when the system’s state is refreshed. Entropy accumulation slowly collects entropy

16

throughout the entire operation of the PRNG and uses this slowly accumulated entropy to refresh
the state. The new property satisfies the authors’ requirement that a good pseudo-random
number generator is one that can ultimately recover after a state compromise.

The model considers two types of adversaries: one, the conventional adversary better known as a
distinguisher and two, a distribution sampler. The latter adversary aids a distinguisher by feeding
the generator with high entropy inputs.

The PRNG construction proposed in [DPR+13] is defined as an algorithm which consists of three
explicit functions: setup(), which outputs a seed, refresh^, I), which updates the state, and
next(5), which make a single call to refresh and outputs a pseudorandom quantity.

Before we look at the functions proposed, let us define the following variables:

m, n, p e N, m is the input length, n is the state length and p is the output length.
Arepresents a distribution on {0,1}™ and A" is some derivative of the distribution.
The generator’s current state Se (0, l}m.
entropy Ie {0, l}m.

- pseudorandom quantity Re {0,1}p.

Udenotes a uniform distribution.

All operations performed in the functions below are in a field of 2n elements. Therefore, addition
represents XOR operation and multiplication represents the AND operation.

Let <7 be a pseudorandom number generator where m<n, then

§■. {o, i}m-^ {o, i}n+p

setup()
//Output: seed (X, X')
(X, X') *-{(), 1}^

It is important to note that in this model, the seed is a calculated entity. Additionally, it is not
hidden from an adversary.

refresh(S, I)
//Input: seed, S, I
//Output: a new state S'
S'^S-X+I

next(S)
//Input: seed (X, X'),
//Output: a new state S',

[/= [X'-S\™

(S, R) = §{U)

17

In the next procedure, step U = [.X' ■ S\ ^ , employs an on-line extractor, which is an extractor

that performs in running time. The extractor is called by pseudorandom number generator Gj and
operates conditionally. This step is bypassed whenever the last call made by the generator was
the next procedure. The purpose of the extractor is to defray the effects of a chosen input attack.
Here, the extractor is a compounded hash function. According to the authors, such function
ensures the quantity obtained reflects uniformity or true randomness.

We will now discuss the mechanism of the online extractor, a crucial component of the DPRVW
generator. From the refresh function, the output S' can also be expressed as the following:

S’ =S-Xi + lj_x ■ A;_1 + Ij—2 ■ Xj~2 + - + I1-X + I0,

where j is the number of distribution samples.

In actuality the refresh function is a hash function that computes the following:

;=o

To ensure security, a second hash function is introduced. Let n be the state length and /be some
input e {0, l}n, so

Hashy(B ■■= [X’-J] m
1 ■

The two functions are combined in the following hash function to extract high quality
randomness during the next procedure.

m

;=o
1

This compound hash function is an online (k,s)extractor if

3.5 Some CSPRNG Implementations

3.5.1 Fortuna

“After analyzing existing PRNGs and breaking [their] share of them, [Bruce Schneier and Niels
Ferguson] wanted to build something secure.”4 5 “Fortuna: Cryptographically Secure Pseudo-
Random Number Generation in Software and Hardware" discusses Fortuna, a CSPRNG created
by cryptographers Niel Ferguson and Bruce Schneider [FN03], Fortuna is a PRNG designed to

4 The proof can be found eloquently written in [DPR+13].
5 https://www.schneier.com/academic/fortuna/

https://www.schneier.com/academic/fortuna

18

be resilient from known cryptographic attacks. The generator possesses properties that are
considered acceptable for cryptographic application. Aside from resiliency, it is computationally
impossible to predict the next bit of a known sequence (backward secrecy) and previous
sequences cannot be determined even if part or all of the internal state is known (forward
secrecy). The document also discussed the generator’s entropy sources, a software
implementation of Fortuna in C++, a hardware implementation as well as an analysis of the
generators.

Fortuna is an improvement to Yarrow, a generator that has been incorporated in systems like iOs,
Mac OS X and FreeBSD6 7. What makes Fortuna different from Yarrow is that it eliminates the
use of entropy estimators— an entity whose definition is generally accepted as impractical.
Fortuna consists of three parts: a generator, an entropy accumulator and a seed file manager. The
generator takes a seed of fixed size and yields pseudorandom numbers of various lengths. The
structure of the generator includes a counter mode block cipher, which includes a key. The
generating algorithm consists of four main procedures: InitializeGenerator, Reseed,
GenerateBlocks and PseudoRandomData. The first procedure sets the cipher key and counter
to zero to indicate that the generator has not been seeded. The second procedure refreshes the
internal state of the generator with an arbitrary bit sequence. A hash function is used to mix the
arbitrary sequence and the current key. The GenerateBlocks function produces blocks of
random quantities. It is a private function in that it can only be called by the generator. Contrarily,
the fourth procedure allows an external entity to request random output. Only 220 bytes of data
can be given per request. Entropy is collected from various sources in the system and stored in
pools by the accumulator; it also seeds and reseeds the generator from time to time. Up to 256
sources of entropy may be used by the generator. Three common ones are discussed in the next
paragraph. Furthermore, even if some of the entropy sources are influenced by an adversary, the
generator is resilient to this attack because of the multiple entropy pools available. The last
component, the seed file manager, ensures the production of randomness even under the
circumstances that the system has recently been booted.

The software implementation discussed in this article used three entropy sources: mouse
movement, keystroke timing and noise from the PC’s soundcard. These sources were included in
the construction because of their accessibility. With mouse movement, the position of the cursor
is consistently recorded and added to the entropy pool. The authors stated that mouse movement
is truly random because it is derived from unsystematic user behavior and computationally, “the
least significant denominations of its position cannot be guessed” [MCC+06], Entropy gathering
in keystroke timing consists of recording the times- in milliseconds- between keystrokes. The
least significant quantities of the recorded times are added to the entropy pool. The third source
was included in the implementation to ensure a constant source of entropy. Mouse movement
and keystroke timing both depend on user behavior; soundcard noise does not. Also, Fortuna is
resilient to attacks if some- not all- of the entropy sources are compromised. Soundcard noise is
more difficult to influence in contrast to the other two sources. It helps to prevent the
cryptosystem from collapse.

6 https://www.apple.com/br/ipad/business/docs/iOS_Security_Octl2.pdf
7 https://svnwcb.freebsd.org/base?view=revision&revision=284959

https://svnwcb.freebsd.org/base?view=revision&revision=284959
https://www.apple.com/br/ipad/business/docs/iOS_Security_Octl2.pdf

19

3.5.2 /dev/random

The Linux kernel has two PRNGs, /dev/random and /dev/urandom. The former is the only one
used to provide pseudorandom outputs for cryptographic applications running on the OS. This is
because /dev/random is a blocking PRNG and /dev/urandom is a non-blocking PRNG. Blocking
PRNGs will not respond to a call until the minimum entropy level has been reached; all
operations are delayed. Non-blocking PRNGs will always operate regardless of the amount of
entropy present in the system. The latter is deemed unsuitable for use in cryptosystems since it
yields outputs even in cases of insufficient entropy.

The /dev/random construction contains two entropy pools: an input pool for collecting entropy
from external sources; and an output pool for generating pseudorandom sequences. The
blocking component works via an entropy estimation function. The algorithm approximates the
entropy of the input values used to update the input pool. In actuality, an input value is not
directly used to measure entropy but its timing. The entropy estimation function calculates the
time differences between the current input value and the immediate preceding value. This step is
compounded two additional times. Then, the minimum of the absolute value of all three
differences is computed. Next, the floor of half the minimum value undergoes modulo 212
operation. Lastly, a logarithmic function applied to last value resulting in the 12 bit entropy
value for the current input.

Let time t be on {0, l}32. The entropy estimate of input rn, Hm, is computed by doing the
following:

5m=rnin(|5m|, 15^1,15^1)

[Roe05] [DPR+13] [GPR06]

In [DPR+13], the authors stated that it is impractical and theoretically impossible to estimate
entropy. This immediately leads to notion that the entropy estimation procedure in /dev/random
is inaccurate and an unreliable security mechanism. The authors also successfully attacked the
PRNG by exploiting the weakness of its entropy estimation function. More information about the
attack can be found in the paper.

20

3.6 Lightweight Cryptographic PRNGs

3.6.1 Lightweight Cryptography

As technology advances, there are a growing number of small, compact computing devices
capable of exchanging information over new types of network. With the increasing popularity of
these devices, concerns have risen about the security or privacy of communication flowing to
and from these “constrained devices.” Any device that has limited processing power, memory
storage capabilities, and power resources are labeled as constrained devices. Internet of things,
sensor networks, smart object networks, and cyber physical systems are prime examples of
networks that host constrained devices.

Lightweight cryptography is a cryptographic protocol or algorithm intended for usage in
constrained device networks. The cryptographic algorithms/implementations discussed prior and
other traditional algorithms are more suited to operate in desktop/server environments. Research
efforts have been concentrated on maximizing and maintaining the balance between security,
performance and resource consumption specific to standard computing networks.

Constrained devices, typically, do not possess the proper resources to employ traditional
cryptographic algorithms. There are some cases where traditional algorithms can be employed
but it is also accompanied by significant performance reduction. Performance encompasses
power and energy consumption as well as latency and throughput. Lightweight cryptography is
intended to provide a solution for the performance-security tradeoff problem that exists for
compact devices.

Lightweight cryptosystems may be implemented on either hardware platforms or in software
applications. The time and space resources required to execute the program defines if an
algorithm is lightweight. Hardware-based algorithms and software-based algorithms use different
metrics to measure time and space resource consumption. For hardware, time consumption is
measured by the throughput in bits per second given a computation frequency and latency.
Required space resources are determined by the number of logical gates required for execution.
For software, time consumption is the number of clock cycles necessary to process data of one-
byte lengths. Space costs are “measured by the number of registers and the number of bytes of
RAM and ROM need” [MBT+17]. Furthermore, the amount of resources a lightweight
cryptographic algorithm use relies on the size of the constrained and other design objectives
imposed by the device [MBT+17],

Note: Even though there are guidelines available for hardware and software implementations,
most lightweight cryptosystems are only implemented in hardware. This can be attributed to the
limitations of the computing devices as well as the efficiency of hardware implementations.

Currently, large efforts are being made to construct efficient lightweight cryptographic
algorithms to be implemented in constrained environments. NIST has also been active in this
effort and is moving towards establishing a lightweight cryptography standard. [MBT+17Later
we will discuss a lightweight cryptographic algorithm, Trivium, which is one of the earlier
approaches catering to this subfield in cryptography.

21

3.6.2 J3Gen

J3Gen is a lightweight PRNG explicitly designed for RFID tags. For this reason, J3Gen is
confined to hardware implementation. The structure of the generator entails four components:
LFSR, Polynomial Selector, RNG and Decoding Logic. The LFSR component describes the
structure of the generating function which is a linear feedback register. To counter the linearity
effects of an LFSR, the authors designed the generator to operate from a set of feedback
functions rather than one. The Polynomial Selector chooses the function the generator employs.

Feedback functions are stored in a circular array. The Polynomial Selector moves along the array
by one or two functions depending on the bit generated by the RNG. A zero bit denotes a single
function shift and a one-bit signifies a two function shift. The RNG is based on thermal noise,
specifically, an oscillator-based high frequency sampler. The generated bit is not received
directly by the Polynomial Selector but passed by the Decoding Logic component. [MGH13]

3.6.3 PRESENT

PRESENT is an ultra-lightweight block cipher created to operate in constrained environments.
The authors imposed a hardware implementation-only restriction on the construction. The core
design principles for PRESENT are (1) a block cipher that is secure and (2) a block cipher that
performs well in hardware. The authors of the block cipher also intended for the cipher to
function as a PRNG in environments where it is more efficient to have a built-in generator than
stored random values.

The PRNG implementation of PRESENT is accomplished by operating the cipher in OFB mode.
The internal state of this generator is 64 bit long. It may be initialized with an 80-bit seed or a
128-bit seed. The main algorithm fashions an SP-network of 31 rounds. More details about the
procedures can be found in [Bog+07],

22

Chapter 4

SecureRandom

In Java, an instance of java.util.Random constructs a pseudorandom number generator and
produces sequences of pseudorandom numbers.8 The PRNG is modeled after the linear
congruential method and uses a 48-bit length initial value. A Random class object can produce
up to 32-bits ofpseudorandom numbers per call to the generating function. [OracleRa]

As stated on Oracle’s website, “Instances ofjava.util.Random are not cryptographically secure.”9
This statement is backed by a number of research presenting attacks on the linear congruential
method. An adversary is capable of guessing the subsequent or previously generated numbers in
the event of a security breach. A direct subclass of the Random class, SecureRandom is the
recommended CSPRNG for any Java program that includes a cryptographic algorithm.
SecureRandom is featured in the Java Cryptographic Service Providers package.10 Depending on
the source of randomness, implementations of SecureRandom can be in the form of a PRNG or
RNG. [OracleSR]

SecureRandom is built on top of an underlying PRNG and uses methods inherited from the Java
Random class. This leaves an implementation flexible to choose the base PRNG. SecureRandom
relies on an external source to provide a 160-bit seed for initialization. The seed provider is
dependent on the operating system the generator is running on or a user specified PRNG. In the
case of a Solaris/Linux environment, /dev/urandom, the system’s native PRNG, supplies the seed.
On Windows, a SHA1PRNG provides the seed by default.

For instances when the underlying PRNG is not specified, the Sun Microsystem implementation
is applied by default. Some implementations like ApacheHarmony and BouncyCastle include
additional methods to ensure the security of their respective generators. The OpenJDK version is
the official implementation of SecureRandom and the version chosen for discussion.

4.1 Structure

The internal state of SecureRandom is 160 bit in length. The main phases of the generator are the
initialization phase, seeding phase and generation/update phase. The authors of SecureRandom
OpenJDK consider the generator to be a “self-seeding” CSPRNG. In fact, SecureRandom is not a
truly self-contained construction and relies on an external class, SeedGenerator, to aid in
supplying a seed for the algorithm.

4.2 Algorithm

Since the OpenJDK version of SecureRandom is a part of the Java Library, only the following is
needed to create an instantiation of the class:

8 java.util.Random is capable of returning numbers other than bits.
9 https://docs.oracle.eom/javase/8/docs/api/iava/util/Random.html
10 This provides security compliant to NIST document FIPS 140-2.

https://docs.oracle.eom/javase/8/docs/api/iava/util/Random.html
https://package.10

23

SecureRandom sr = new SecureRandom();
byte[] bytes = new byte[size];
sr.nextBytes[bytes] ;

The initialization process for SecureRandom begins by creating an instance of MessageDigest
SHA1. The PRNG is not seeded until a call is made to the engineNextBytes method.

The seeding process begins once the generating procedure is invoked. At this step, the algorithm
instantiates an inner class called SeederHolder. SeederHolder creates another instance of
SecureRandom srtnner but with a specified seed, s/, as input. Seed sj is retrieved from the
SeedGenerator class. The class collects entropy from the system then executes a SHA1 hash on
the collected data. Some entropy sources include the current time in milliseconds; runtime
memory data; system property information like the operating system name, architecture and
version as well as property information about the Java Virtual Machine and Java Runtime
Environment. The hash of the entropy sources is assigned to Si. The state of sr/nneAs assigned
the hash of sy. (This is the first state of the PRNG and simply, a double hash on the system
entropy.)

SeederHolder makes a second call to SeedGenerator to provide 160 bits of pseudorandomness.
The hash on this quantity and the first state is assigned to the second state of srmner. Finally, .sr is
seeded with s, the hash of the second state.

s = Hashz{HashY(Hashx (Sj) + /)), where/is some pseudorandom input.

The engineNextBytes method is responsible for generating pseudorandom quantities.
SecureRandom generating process begins by updating the digest with the current state. Then, it
performs a hash operation on the state. The output is a 20-byte long sequence. Let 5/ denote the
ith state bit, the following formula is used to update the state:

[Or ,s2 ■■■ s160) + Hash(s1,s2 ••• s160) + 1] mod 2160 ,

Here is the OpenJDK code snippet focusing on the main generating procedure:

while (index < result.length) {
digest.update(state);
output = digest.digest();
updateState(state, output);

todo = (result.length - index) > DIGEST_SIZE ?
DIGEST_SIZE : result.length - index;

for (int i = 0; i < todo; i++) {
result[index++] = output[i];
output[i] = 0;

}
remCount += todo;

24

The variable result denotes the byte array that holds the pseudorandom sequence. With each
state, SecureRandom produces at most 20 bytes at a time. The while-loop concatenates each 20
byte sequence and does not break until the desired length is attained.

4.3 Output

SecureRandom output can be simplified to:

Oi,z2 ••• z160) <- Hash(s1,s2 - s160).

The security lies in the reliability of the SHA message digest. Additionally, two consecutive
internal states may not be identical. This will ensure a change in consecutive outputs.

25

Chapter 5

Trivium

A stream cipher is a symmetric cipher that encrypts bits individually. Stream ciphers can be
synchronous or asynchronous. Synchronous types are ciphers whose keystreams only depend on
the key. In contrast, asynchronous types are stream ciphers whose keystreams are dependent on
the ciphertext. The keystream, the output of a stream cipher, may be used as a source for
pseudorandom bits.

Trivium is a synchronous stream cipher created by Christophe De Canniere and Bart Preneel. It
was submitted to the eSTREAM competition and selected for the eSTREAM portfolio of
lightweight stream ciphers for hardware application. Despite its intent for hardware, Trivium is
still efficient in software-based environments. Additionally, it has been designated by
International Organization for Standardization (ISO) as a keystream generator for lightweight
stream ciphers.

Trivium can also be described as a bit-oriented stream cipher conducting operations at the bit
level. The internal state of the cipher consists of three registers totaling to 288 bits. The first
register holds 93 state bits, the second holds 84 state bits and the last register holds 111 state bits.
The algorithmic component is broken down into two phases, the setup phase and the generation
phase (which is also responsible for updating the internal state of the cipher). Trivium takes in a
key and IV of 80 bits each and guarantees to generate up to 264 keystream bits. [DP05]

5.1 Structure

When creating Trivium, the authors had two mandatory specifications the construction must
contain. First, the structure must generate seemingly uncorrelated keystreams. Second, the
construction must also be efficient such that there is a high throughput of generated keystream
bits per cycle per logic gate. The authors referenced the operations of block ciphers as a solution
to their specifications. In comparison to stream ciphers, block ciphers are more developed. Many
techniques have been uncovered to bolster the efficiency of block ciphers to operate speedily and
low space consumption. Additionally, the security of a block cipher is well researched and
understood. The internal structure of a secure block ciphers have been well defined.

Block ciphers achieve linear independence amongst input and output values by alternating
between two operations. Each block is first partitioned into smaller data units and transformed
using distinct substitution boxes (S-boxes), The second operation entails combining the
transformed data units differently to reconstruct the block. The two operations foster confusion
and diffusion within each block. In block cipher algorithms, this dual procedure is better known
as a substitution-permutation network (SP-network).

Block ciphers can function like stream ciphers, generating keystreams, if they are operated in
Cipher Feedback (CFB) mode, Output Feedback (OFB) mode and most popularly, Counter (CTR)
mode. CFB takes an initialization vector (IV) and passes it through the cipher. The plaintext is
then XORed with the output. The ciphertext generated is then used as input to the successive
round of encryption. This process may be repeated to obtain a keystream of n-length. OFB mode

26

starts with an IV and passes it to the cipher as input. The immediate output obtained is passed to
the successive round as an input. The process is reiterated until the desire keystream size is
achieved. CTR mode uses a nonce (which is equivalent to the IV used in the aforementioned
modes) as the initial block. A counter value is used as cipher input. The successive round uses
(counter + 1) as input. [DwoOl]

Remember, block ciphers are cryptographic algorithms that handle data as blocks of information.
Stream ciphers are algorithms that handle data as a stream. We will now present how Trivium
has taken the operations of block ciphers and translated them to correspond with the structure of
a lightweight stream cipher.

In the descriptions of the modes of operation, we saw that encryption is done as a succession of
rounds. At each round, the SP-network provides diffusion via a linear diffusion function and
confusion employing a set of S-boxes. In Trivium, the concept of rounds in block ciphers is
translated as registers. The cipher is partitioned into three registers. As for S-boxes, they are
replaced with a special structure. The set of S-boxes that are found at each round is reduced to a
single 1 x 1 bit block for each register. The lxl bit S-box transforms a bit via an XOR operation
with a bit residing in another register. The linear diffusion function is a linear filter; a technique
that transforms a bit using linear combinations of neighboring bits. Furthermore, Trivium
specifically mirrors the mechanism of a block cipher in OFB mode. Outputs from one register
are fed as input to another register.

5.2 Algorithm

Trivium requires an 80-bit key and 80-bit initialization vector for set up. Initialization begins
with the key being copied to the first register. After copying the key to the first 80 slots, the
remaining state bits are set to zero. The initialization vector is then written to the second shift
register. The rightmost four bits in this register are set to zero. The last register has all its bits set
to zero except for the last three bits; they are set to one. The internal state is refreshed 1152 times
to ensure that all bits are influenced by the key and the IV. The pseudocode is given as the
following:

[si > ^2 , •••, S93] \Ki, ••• , Kq0,0 , ••• ,0]

[S94 , S95 , ••• , s177] <— [IV1, , IVqq , 0 , ••• ,0]

[5178 ’ 5179 > < s288] [0 , •" ,0,1, 1, 1]

FOR 1 = 1 to 1152

£1 s66 + s91 ‘ s92 + s93 + s171

S162 + s175 ■ S176 + S177 + 5264

£3 S243 + s286 ' 5287 + 5288 + S69

[sx,s2 ••• S93] [£3 > ^1 592l

[■-’94 ’ ^95 ^177] [£l’594 5176l

[s178>s179 s288l [£2 »S178 5287]

END FOR

27

The Trivium generation process actually begins by performing an exclusive or operation on two
specific bits from each register. The resulting three bits collectively undergo another exclusive or
operation. The result from this last step is a single bit that is added to the keystream. The
pseudocode is below:

llm = number of pseudorandom bits requested
FOR i = 1 to m

tl s66 + S93

h S162 + S177

s243 + S288

Z[<— tx + t2 + t3

//Trivium updates by doing the following:
ti <- ti + s91 ■ s92 + s171

h f2 + S175 ■ S176 + S264

f3 h + s286 ■ s287 + s69

[Sl,S2 ■” £93] tt3<sl "■ s92l
[s94,Sg5 ••• S177] <— [ti,Sg4 ••• s176]

[S178'S179 s288l \Pl ’ S178 s287l

END FOR

Trivium produces only a single bit at a time. This entire process is reiterated until the desired
length is reached.

Figure 2. Structure of Trivium

28

5.3 Output

The pseudorandom output can be simplified to:

zi s66 + S93 + S162 + S177 + S243 + s288.

The unpredictability of the zi is dependent on the constant rotation of the state bits and
transformation of some bits with each state update. An attacker must be aware of the internal
state to accurately predict the next bit. This is quite difficult given that each Trivium state is
constructed to be linearly independent.

5.4 Scholarly Attacks

In Dinur and Shamir’s “Cube Attacks on Tweakable Black Box Polynomials,” the authors
introduced a new class of attacks to which stream ciphers and other cryptographic schemes
exhibit vulnerability. Many cryptographic systems can be defined by a system of polynomial
equations. The cube attack is a method that solves such equations by computing a sum over the
output bits generated by a set of chosen IVs. Dinur and Shamir were able to recover the key of a
672 reduced round Trivium variant in 219 bit operations. Before the cube attack, the best attack
on the same variant required 255 bit operations. The cube attack is efficient in recovering the full
key up to 767 rounds of Trivium.

Another paper, “Cube Attacks on Trivium,” furthered explored this cryptanalytic method by
combining it with other known technique. Pierre-Alain Fouque and Thomas Vannet were able to
recover the full key of a 799 reduced round Trivium variant in 262 bit operations.

Trivium is also vulnerable to algebraic attacks. This type of cryptanalytic attack establishes
algebraic relations between cipher inputs and output to simplify a cipher to a system of equations
or to recover the key. “Advanced Algebraic Attack on Trivium,” the authors, Quedenfeld and
Wolf, showed an algebraic attack that broke 625 reduced round Trivium variant. The attack was
successful using only 512 bytes of output.

Even though there are a number of papers describing attacks on Trivium, please keep in mind
that Trivium is still secure. All of the attacks listed require scenarios that are not typical to the
normal operation of Trivium. For example, most attacks are carried out on reduced rounds of
Trivium versus the full number of rounds.

5.5 A Generalized Model of Trivium

In the paper, “On the Design of Trivium,” the authors provided a generalization of the main
algorithm in Trivium. First, let us revisit the state bits involved in the generating and updating
processes:

{566> s69> s91> S92> 593) is162> s171> s175» 5176< 5177) (5243> s264> s286’ s287> 5288)

The state bits are divided into three sets based on the register where they reside. Taking a closer
look, there are a few patterns which emerge across the sets. First, in each set the first, second and
fifth state bit index numbers are all multiples of three. Also, the third and fourth and fifth state

29

bits in each set are consecutive bits. The fifth state bits are the last state bit for their respective
registers. Also, the first and fifth bits are a part of the special S-box construction in Trivium. If
we treat the indices as variables we get the following:

{s3mi> s3m2> ■^3n1-2< ^3n!-l' {^37n3< s3m4< $3n2-2> $3n2-l> s3n2} {s3m5> s3m6> $3n3-2> $3n3—l> ^3n3}5

where m1<m2< n1<m3< m4<n2 < m5< m6< n3. The variable m expresses the upper most
bit in a register. Index i corresponds with the register location of a state bit.

The generalized version of Trivium’s main procedures is as follows:

h s3m1 + s3n1

h s3m3 + s3n2

h S3ms + 53n3

Zi <r- ti + t2 + t3

t4 t4 + S3ni-2'£37^-1 + S3rll/i

t2 t2 T S3ri2_2 ' s3n2-l+ s3m6

13 ^3 "f 53n3-2 ' $3n3-l T S3rnz

[S1,S2 "• ^Tii] [^3 * sl> > s3n!-l]

[53n!+l « s3n!+ 2 s3n2] [U > Ssrii+ l'> s3n2-l]

[s3n2+l > s3n2+2 "■ s3n3] [^2 * 53n2 + l > > s3n3-l]

From this result, the authors were able to decompose Trivium into Univium, a 1-round Trivium
based cipher, and Bivium, a 2-round Trivium based cipher. The upper bound of Univium is state
bit n\ and for Bivium, it is m. Furthermore, they proposed the /t-round Trivium based cipher that
extends Trivium to some UM and selects the state bits based on a border primitive polynomial.
We will discuss this further in the next chapter.

30

Chapter 6

Quadrivium

Quadrivium is a pseudorandom number generator designed with a software implementation in
mind. The structure is primarily modeled after Trivium but coalesce findings in [TCL09]; the
definition of primitive polynomials; and feedback functions found in linear feedback shift
registers (LFSRs).

6.1 Design

Quadrivium is a 384 bit state PRNG. The generator is partitioned into four registers of 98-bit, 97-
bit, 95-bit and 94-bit length. It requires a total of 160 random bits for initialization.

To understand the design principles of Quadrivium, first, we will review some standard
definitions relating to polynomials.

Definition (polynomial) A polynomial p(x) is a mathematical expression consisting of a sum of
terms where each term includes x raised to a non-negative integer power and multiplied by a
coefficient. It can be written as

n

i=0

where the variable a, denotes the coefficient ofx/ and a„ is different from zero. The value of n is
the degree ofp(x). For this discussion, we restrict all p(x) to polynomials in GF(2). Therefore, all
coefficients are either zero or one.

A polynomial p(x) is said to be trivial if the degree ofp(x) is -oo, indicating a zero polynomial, or
0, a constant polynomial; otherwise, it is nontrivial.

Definition (irreducible polynomial) A polynomial p(x) is irreducible if it cannot be factored
into two or more non-trivial polynomials.

Definition (primitive polynomial) A primitive polynomial is an irreducible polynomial with
degree n> 0 and a polynomial order (or period) of 2M.

Definition (Linear Feedback Shift Register) An LFSR is an object that employs the function
/: {0,1}” -> (0,1} such that the output bit xo is

n

i=1

The feedback function has a period of 2M. It is a common practice to employ primitive
polynomials as a feedback function.

31

In [TCL09], the authors noted the following as the active bits in Trivium:

(s66>s69's93} {s162>s171>s177} (5243> s264> s288)-

Recognizing that each index is a multiple of 3, these bits can be generalized as

{s3m! > ^3m2’ s3n1 j {^37713' s3m4> ^3n2) {^377i5' s3m6> ^37i3}-

For the next part of the discussion, we are only concerned with the family of variables {mi, m2,
m} {m3, m4, m) {ms, m6,

If we consider these variables as powers of x for non-zero terms in a polynomial, we get the
following:

xmi + xm2 + xUl + x™3 + x™4 + x”2 + x7”5 + xm6 + x7*3.

Definition (A-order primitive polynomial) Let k c N, a polynomial p(x) is a border primitive
polynomial if

p(x) = (x + 1) kq(x), where q(x) is a primitive polynomial.

[TCL09] described Trivium as a 3-order primitive polynomial with q(x) = x22 + x23 + x31 +
x54 + x57 + x59 -I- x81 + x88 + x96.

We were motivated by this definition to extend Trivium to a kfh round and use primitive
polynomials to select the active state bits in Quadrivium. Certainly, our construction
differentiates from the one proposed in [TCL09] in two major respects. First, Quadrivium is
driven by the principles of PRNGs. This results in a pseudorandom sequence of lesser correlated
bits. Second, the active state bits were redefined to be in agreement with concept of PRNGs.

Since Quadrivium takes a PRNG approach, our concern lies in the linearity of the pseudorandom
output. We imposed several criteria to be in accordance with this approach. Recall in Trivium
that the pseudorandom bit zi is

s66 + 593 + s162 + S177 + S243 + S288

In our construction, it was decided to redefine the active state bits to those responsible for
pseudorandom bit z;. Second, the active state bits must be derived from a primitive polynomial of
degree 384. In Trivium, two state bits from each register is used to generate a single bit output.
This should be the criterion to restrict the number of active state bits. As a result, the active state
bits are S49, S98, S147, si9s, S243, S290, S337 and S384.

6.2 Algorithm

The initialization procedure, like Trivium, uses an 80-bit key and 80-bit IV. For the first and
second registers, the key and IV is copied to the registers, respectively. The third register is filled

32

with zeroes excluding the last three state bits. Those are set to one. The last register is initialized
with one-bit bit values except for the last four bits. They are zeroes.

[$1 I s2 > ■" > 598] [^1 »1^80 » 0 , ••• ,0]
[Sgg , S100 ; ■" < ^195] 1 / > ^80 » ^ " ,0]

[Sigg , Sigy , ••• , S2go] [0 , • • • ,0,1,1,1]

[S29l , S292 » "■ > ^384] 1»0,0,0,0]

Once the registers are loaded, the rotate procedure is executed. The pseudocode is as follows:

FOR / = 1 to 1536

Tl s49 + 596 ■ 597 + s98 + s171

^2 S147 + 5193 ‘ s194 + s195 + s358

^3 S243 + 5288 " s289 + s290 + s69

£4 s337 + s382 ‘ 5383 + 5384 + 5264

[Sl>52 598l [^2>sl ^97]

[s99,S100 ••• S195] <- [t4,Sgg •" s194]

[s196,Si97 ••• s2g0] *- [ti,S196 ■" ^289]

[s29i,S292 "• 5334] [t3,S292 •" S383]

END FOR

The rotate procedure is reiterated for four full cycles.

The main procedure for Quadrivium is quite similar to Trivium. Below is the pseudocode:

llm = number of pseudorandom bits requested
FOR i = 1 to m

ti <- s49 + s98

f2 s147 + s195

h S243 + S290

t4 <- S337 + S384

Zj <- + t2 + t3 + t4

Tl s96 ‘ S97 + S171

^2 s193 ’ s194+ s358

^3 s288 ' S289 + S69

t4 <- S382 1 S383 + S264

[Si ,s2 — 598] «" ••• S97]

[Sgg,Sioo ^95] [^4 ' ^99 ■" ^194]

[s196’5197 s29ol [O > S196 s289l

33

[s291 <5292 ^384] i^3>s292 5383]

END FOR

Unlike Trivium, we did not include the previous values of U in the update function to produce the
current values of U. The inclusion of the values does not necessarily have a negative impact on
the generator. The decision to exclude these values was to restrict their influence to only the
output bit versus both the output and the new state bits in Trivium. Both Quadrivium and
Trivium has a nonlinear internal state so it is difficult to determine their periodicity. In [DP05],
the authors noted that the period of Trivium is at least 296"3 -1. This is under the assumption that
the state evolves linearly. For Quadrivium, the period is at least 2384-l, given the same
assumption. This is based on the fact that the output function is derived from a primitive
polynomial.

34

Chapter 7
Statistical Comparisons

Statistical testing is one of the most common methods used to determine the output quality of
PRNGs. This analysis employed NIST statistical test suite (STS) and Dieharder: A Random
Number Test Suite11 to assess the performance of OpenJDK SecureRandom, Trivium and
Quadrivium. We used SecureRandom and Trivium as a benchmark for the performance of
Quadrivium. For all analyses, three different pseudorandom data files from each generator were
tested. Each file consisted of 122.88 million bytes. This was determined by the Dieharder test
suite which requires about 31 million integers for proper analysis.

7.1 NIST Statistical Test Suite

National Institute of Standards and Technology (NIST) statistical test suite for cryptographically
secure RNGs and PRNGs is a standard for statistical testing. The suite contains fifteen tests12
which analyze the quality of a PRNG’s output; and determine whether the outputs mimic the
behaviors of truly random sequences. Each test uses a test statistic to determine whether to reject
the null hypothesis or not. The null hypothesis is the tested sequence is random; it lacks a pattern
and portrays irregularity. The alternative hypothesis is the sequence is not random, a pattern was
detected therefore it is predictable.

The assessments focus on different behaviors which indicate predictability in a sequence; they
can be classified into four main types. The first type is frequency tests. They are the Frequency
test (FREQ), Frequency Test within a Block (BLOCKFREQ), Runs Test (RUNS), Test for the
Longest Run of Ones in a Block (LONGRUNS). The following two tests, Binary Matrix Rank
Test (RANK) and Discrete Fourier Transform Test (FFT) fall under the repetitive patterns type.
Non-overlapping Template Matching Test, Overlapping Template Matching Test (OTEMP),
Maurer’s “Universal Statistical” Test (UNIVERSAL), Linear Complexity Test (LINCOMP),
Serial Test (SERIAL) and Approximate Entropy Test (APPROXENT) are pattern matching
types. The fourth type is random walks and consists of Cumulative Sums Test (CUSUMS),
Random Excursions Test and Random Excursions Variant Test. [ZG12]

Even though all tests focus on different aspects of an ensemble, there are three assumptions that
they all hold about random outputs. These assumptions are taken in consideration when
determining the quality of a PRNG’s outputs and if they are comparable to a set of truly random
sequences. The assumptions are uniformity, scalability and consistency. Looking at a random
sequence of length n, uniformity means the occurrence of zeroes should be one-half of the
sequence, likewise the occurrence of ones. Scalability determines to what degree is a sequence
random. This property also expects that all subsets of a random sequence must also be random.
Consistency expresses the behavior of a PRNG. According to the literature, a consistent PRNG
will always produce the random sequences of equal quality.

11 This suite includes tests from Diehard Battery of Tests. To refrain from redundancy, we conducted analyses from
both suites with only Dieharder.
12 The Document included sixteen tests but the actual program performs only fifteen. This paper will discuss all
sixteen tests.

35

It is not necessary to conduct all tests in the suite when analyzing a PRNG, The analyst is
responsible for selecting the appropriate combination of assessments used to study a generator.

7.2 STS Results

Twelve tests in the suite were conducted on each file. We excluded the Non-overlapping
Template Matching Test, Random Excursions Test and Random Excursions Variant Test. For
testing purposes the data file was segmented into 980 subsequences, each one million bits in
length. The significance level, a = 0.01, was the determining factor for the number of
subsequences. For a significance level of 0.01, there should be at least one hundred sequences
available for testing. The subsequence length was chosen based on the Linear Complexity test.
This test requires, at minimum, one million bit-long sequences to function properly. This is the
largest quantity amongst all the tests in the suite.

For each STS run, the suite returns twelve values for each test. One value is the proportion of
subsequences passing the respective test. Another value is a single p-value of all the p-values
determined. The remaining values are the distribution of p-values over ten subintervals on (0, 1],
The p-value is used to determine the degree of uniformity amongst sequences. The closer a p-
value is to one; the closer it is to perfect uniformity. A p-value > 0.0001 and a proportions value
of 0.979592 are required to pass a test.

For Figures 3 to 6, we selected the best performing dataset for each generator and compared the
distribution of p-values for four tests. The best performing dataset for each generator happened
to be dataset 3. The p-values of the sequences are distributed over ten bins. Bin 1 reflects p-
values ranging from zero up to but not including 0.1. Bin 2 sequences ranges from 0.1 up to but
not including 0.2. The range of each successive bin is incremented by a tenth.

■ SecureRandom
Trivium

■ Quadrivium

123456789 10

Bins

Figure 3. Frequency test distributions based on the best dataset of each generator.

Quadrivium and SecureRandom degree of uniformity are approximately the same for the
Frequency test. They are significantly larger than Trivium degree of uniformity. (Refer to Table

36

1.) The Frequency (Monobit) Test verifies that the existence of zeroes and ones—bit-wise— are
equally proportional. In relation to the other tests in the suite, this is by far the most important; if
an ensemble cannot pass this test, most likely it will not pass the other fifteen. Remember, one of
the assumptions of truly random sequence is uniform distribution of zeroes and ones and another
is scalability. Thus the number of zeroes and ones must be balanced bit-wise in order to be
balanced word-wise. The test takes a sequence and converts all the zero bits to a value of
negative one (-1) and all the one bits to positive one (+1). The values are all added together. This
value will be used to compute the test statistic. After the test statistic is determined, it is used to
calculate the p-value. If the p-value is greater than or equal to 0.01 the sequence is said to be
random.

Bins

Figure 4. Runs test distributions based on the best dataset of each generator.

SecureRandom displayed the most uniformity comparing to the others in the Runs Test.
Quadrivium is quite close to SecureRandom but Trivium trailed far behind the others. (Refer to
Table 1.) A run is defined as a chain of identical bits. In this test, a run begins at the first bit
whose preceding bit is of opposite value and terminates when the immediately successive bit is
of opposite value; its length is the number of bits in the said run. The Runs Test determines if a
sequence switches too quickly or too slowly between zeroes and ones. The Frequency test must
be performed before conducting the Runs Test. The next step is to calculate the fraction of ones
in the sequence. Now, if the sequence passed the Frequency test and the fraction of ones is
within a certain boundary described by the literature, there is no need to proceed with this
assessment. If the sequence failed to pass this bound, the test statistic is calculated followed by
the p-value. The p-value here must also be less than 0.01 to be considered non-random.

37

■ SecureRandom
Trivium

■ Quadrivium

1 23456789 10

Bins

Figure 5. Approximate Entropy test distributions based on the best dataset of each generator.

For the Approximate Entropy test, Quadrivium displayed the greatest uniformity amongst its
sequences. (See Table 1.) In the Approximate Entropy test, the frequency of overlapping patterns
of m-bit length in comparison to overlapping patterns of (m+1)-bit length in a sequence are
measured. Entropy— here—is the repetition of bit patterns. A sequence is random if the
difference between the entropies of m-bits and (m+1)-bits are large. Random sequences have an
approximate entropy value close to natural logarithm of two. [RukOO]

■ SecureRandom
Trivium

■ Quadrivium

Bins

Figure 6. Linear Complexity test distributions based on the best dataset of each generator.

Quadrivium is the closest generator to a uniform distribution. (Refer to Table 1.) The Linear
Complexity test performs the Berlekamp-Massey Algorithm on each block to find the shortest
LFSR within a block. Short LFSRs indicate that the sequence is not random.

38

SecureRandom Trivium Quadrivium
Tests

FREQ
BLOCKFREQ
CUSUMSF
CUSUMSB
RUNS
LONGRUN
RANK
FFT
OTEMP
UNIVERSAL
APPROXENT
SERIAL
SERIALB
LINCOMP

P-Value
0.48167
0.20426
0.46211
0.78387
0.74603
0.12674
0.41132
0.89891
0.02046
0.47577
0.88409
0.41681
0.46211
0.66895

Proportion
0.98878
0.98980
0.98980
0.98980
0.99184
0.98878
0.98980
0.99184
0.98878
0.98980
0.98878
0.99184
0.99490
0.98673

P-Value
0.09848
0.28706
0.20988
0.00843
0.11117
0.54239
0.53414
0.03114
0.22990
0.70893
0.28850
0.93038
0.77604
0.67530

Proportion
0.99184
0.98469
0.99286
0.99490
0.99082
0.99082
0.98878
0.98673
0.98673
0.98980
0.99694
0.98980
0.99082
0.98367

P-Value
0.47380
0.35380
0.51778
0.01049
0.66047
0.01934
0.65623
0.51981
0.80307
0.60104
0.93156
0.67319
0.28706
0.77801

Proportion
0.98673
0.99082
0.98878
0.98776
0.98571
0.99490
0.99184
0.98571
0.99184
0.99184
0.98776
0.99184
0.99184
0.99286

Table 1. STS tests results from the best performing dataset of each generator.

SecureRandom
_Dataset 1_Dataset 2_Dataset 3_

Tests P-Value Proportion P-Value Proportion P-Value Proportion
FREQ 0.06773 0.98776 0.29875 0.99184 0.48167 0.98878
BLOCKFREQ 0.44105 0.98878 0.69427 0.98673 0.20426 0.98980

CUSUMSF 0.46794 0.98469 0.76415 0.98980 0.46211 0.98980

CUSUMSB 0.57154 0.98571 0.32627 0.98571 0.78387 0.98980

RUNS 0.14923 0.99184 0.10403 0.98980 0.74603 0.99184

LONGRUN 0.54446 0.99184 0.29287 0.98980 0.12674 0.98878

RANK 0.85172 0.98878 0.67107 0.99592 0.41132 0.98980

FFT 0.60316 0.98571 0.66260 0.98571 0.89891 0.99184

OTEMP 0.19552 0.98878 0.53209 0.99388 0.02046 0.98878

UNIVERSAL 0.49759 0.98980 0.75210 0.98673 0.47577 0.98980

APPROXENT 0.67530 0.99286 0.33743 0.98265 0.88409 0.98878

SERIALF 0.40407 0.98980 0.50562 0.99184 0.41681 0.99184

SERIALB 0.14166 0.99184 0.50562 0.98673 0.46211 0.99490

LINCOMP 0.45824 0.98878 0.72554 0.98878 0.66895 0.98673

Table 2. STS tests results of all SecureRandom datasets.

39

_Tnvium__
_Dataset 1_Dataset 2_Dataset 3_

Tests_ P-Value Proportion P-Value Proportion P-Value Proportion
FREQ 0.49959 0.99184 0.23606 0.98673 0.09848 0.99184
BLOCKFREQ 0.24235 0.98571 0.56317 0.98878 0.28706 0.98469
CUSUMSF 0.46989 0.98776 0.19552 0.98673 0.20988 0.99286
CUSUMSB 0.61800 0.99184 0.01962 0.98673 0.00843 0.99490
RUNS 0.46599 0.99184 0.63924 0.98673 0.11117 0.99082
LONGRUN 0.15624 0.99184 0.53003 0.98878 0.54239 0.99082
RANK 0.29433 0.98878 0.42977 0.98878 0.53414 0.98878
FFT 0.13840 0.98878 0.73582 0.98571 0.03114 0.98673
OTEMP 0.83961 0.98469 0.00118 0.99490 0.22990 0.98673
UNIVERSAL 0.37067 0.98571 0.98375 0.99082 0.70893 0.98980
APPROXENT 0.13521 0.99592 0.14752 0.97959 0.28850 0.99694
SERLALF 0.16539 0.98878 0.18708 0.99286 0.93038 0.98980
SERIALB 0.26740 0.98776 0.81801 0.99388 0.77604 0.99082
LINCOMP 0.47185 0.99286 0.02698 0.99082 0.67530 0.98367

Table 3. STS tests results of all Trivium datasets.

Quadrivium
Dataset 1 Dataset 2 Dataset 3

Tests P-Value Proportion P-Value Proportion P-Value Proportion
FREQ 0.07496 0.98673 0.48563 0.99184 0.47380 0.98673
BLOCKFREQ 0.93729 0.98980 0.02625 0.98776 0.35380 0.99082
CUSUMSF 0.24362 0.98878 0.79546 0.98878 0.51778 0.98878
CUSUMSB 0.43539 0.98367 0.85342 0.99082 0.01049 0.98776
RUNS 0.01194 0.98673 0.36896 0.98980 0.66047 0.98571
LONGRUN 0.21101 0.99286 0.22267 0.99184 0.01934 0.99490

RANK 0.91141 0.99082 0.71310 0.98878 0.65623 0.99184

FFT 0.17498 0.98163 0.04048 0.98980 0.51981 0.98571

OTEMP 0.46018 0.98673 0.76615 0.99490 0.80307 0.99184

UNIVERSAL 0.51169 0.98163 0.84311 0.99388 0.60104 0.99184

APPROXENT 0.89309 0.99286 0.35880 0.98367 0.93156 0.98776

SERLALF 0.55900 0.98776 0.94486 0.99082 0.67319 0.99184

SERIALB 0.98424 0.98061 0.30173 0.99286 0.28706 0.99184

LINCOMP 0.22990 0.99184 0.65835 0.98776 0.77801 0.99286

Table 4. STS tests results of all Quadrivium datasets.

40

Average proportions
Tests SecureRandom Trivium Quadrivium

FREQ 0.98946 0.99014 0.98844
BLOCKFREQ 0.98844 0.98639 0.98946
CUSUMSF 0.98810 0.98912 0.98878
CUSUMSB 0.98707 0.99116 0.98741
RUNS 0.99116 0.98980 0.98741
LONGRUN 0.99014 0.99048 0.99320
RANK 0.99150 0.98878 0.99048
FFT 0.98776 0.98707 0.98571
OTEMP 0.99048 0.98878 0.99116
UNIVERSAL 0.98878 0.98878 0.98912
APPROXENT 0.98810 0.99082 0.98810
SERIALF 0.99116 0.99048 0.99014
SERIALB 0.99116 0.99082 0.98844
LINCOMP 0.98810 0.98912 0.99082

Table 5. The average proportions of all generators for each STS test.

Table 1 shows a comparison of the best performing dataset from each generator. The datasets
were chosen based on the dataset with the highest overall average of proportions for each
generator. Tables 2 through 4 displays the overall p-value of p-values and proportion for each
test from all datasets. Table 5 shows the average proportions for each generator. SecureRandom
had the highest average for the runs, Binary Matrix Rank, Discrete Fourier Transform and Serial
Tests. Trivium outperformed the others on the Frequency, Cumulative Sums and Approximate
Entropy Tests. Quadrivium had the highest average proportions for the Frequency within a Block,
Tests for the Longest Runs, Overlapping Template Matching, Maurer’s “Universal Statistical”
Test and Linear Complexity Tests. (Refer to Appendix C for test descriptions.)

7.3 Diehard Battery of Test

Diehard is a statistical testing suite created by George Marsaglia, who is also the creator of
pseudorandom number generator Xorshift. Diehard includes sixteen tests - fifteen personally
authored by Marsaglia- that gauge the randomness quality of a generator. The tests require a
binary file of at least 80 million random bits as input. Each test in Diehard has its own set of
parameters. In other words, the number of bits needed for testing varies. Additionally, there is an
improved testing suite available known as Dieharder battery of tests.

A majority of the assessments in the suite uses a p-value to determine if a sequence is random.
This is similar to the NIST statistical test suite which also has a number of tests that rely on p-
values to draw a conclusion. In statistics, p-values represent the probabilities that some arbitrary
event will occur; their purpose is to accept or reject the null hypothesis, which is the tested claim.
In Diehard, the null hypothesis is the analyzed sequence is random. Tested sequences are

41

acknowledged as random if p-values are not close to zero or one. Contrarily, in NIST statistical
test suite, the further the p-value is to one, the further a sequence is to being truly random.

Another difference between the two testing suites is the analysis of the results. NIST statistical
test suite specifies the p-value needed to reject the null hypothesis. Diehard battery of tests is
ambiguous and only states that the p-values should be uniform on the set [0, 1).

The names of the exams included in the Diehard battery of tests are Birthday Spacings Test;
Overlapping 5-Permutation Test; separate Binary Rank Tests for 31x31, 32x32 and 6x8 matrices;
Bitstream Test; OPSO, OQSO and DNA (Overlapping Pairs Sparse Occupancy, Overlapping
Quadruples Sparse Occupancy and DNA Test, respectively); separate Count the Is Test for byte-
streams and specific bytes; This is a Parking Lot Test; Minimum Distance Test; 3DSpheres Test;
Squeeze Test; Overlapping Sums Test; Runs test -which is a standard test; and Craps Test.

7.4 Dieharder: A Random Number Test Suite

Dieharder is a test pack for random number generators. The suite includes modified tests from
Diehard battery of tests, NIST statistical test suite as well as some assessments created by Robert
G. Brown, the chief developer of Dieharder. The test suite is an open source project whose
purpose is to be a one-stop source for quantifying randomness. The project encourages inclusion
of other new testing schemes from other developers. Dieharder is primarily concerned with
analyzing the randomness quality and speed of truly random and pseudorandom number
generators.

In comparison to STS and Diehard, the suite prefers to examine the actual generator, not a
random output file produced by the generator. The reasoning behind this is “perfect randomness
is the production of ‘unlikely’ sequences of random number at an average rate.” Looking at the
output alone is not sufficient to declare randomness; the likelihood of the sequence as a whole
cannot be determined. Even though Dieharder prefers the aforementioned method of testing, it
can still accommodate file-based inputs.

Dieharder includes tests from both STS and Diehard. Parameters from both suites are altered so
failures are concluded without ambiguity. Moreover, the Diehard tests are improved in three
ways. One, assessments that uses KSTEST, Kolmogorov-Smimov test, imposes a higher default
quantity of one hundred p-values. This coincides with Dieharder’s aim to determine
unambiguous failure. Two, analysts have more control over tests that use samples. Sample sizes
are treated as a variable rather than a fixed constant. Three, assessments that employs
overlapping techniques on sequences were adjusted to use non-overlapping techniques. Please
note that these improvements were made only if it was possible.

There are ten tests included in Dieharder that were created by Robert G. Brown. They are the
following: Bit Distribution Test, Generalized Minimum Distance Test, Permutations Test,
Lagged Sums Test, KSTest (Kolmogorov-Smimov Test) Test, DAB Byte Distribution Test, DCT
(Frequency Analysis), DAB Fill Tree Test, DAB Fill Tree 2 Test and DAB Monobit Test.

42

7.5 Dieharder Results

Diehard Battery of tests and RGB tests were conducted under the Dieharder test suite. Each
dataset was parsed into 32 bit unsigned integers totaling 30.72 million integers. The suite
returned two results: a p-value and an assessment of passed, weak or failed. A weak assessment
signifies that the p-value < 0.005. A failed assessment signifies the p-value < 0.000001.

Tables 6 and 7 shows the assessment counts for all collected data. Even though Diehard and
RGB are sets of fifteen and ten tests, respectively, the total assessment counts are greater. This is
attributed to the fact that some of the tests are conducted with multiple parameters. One of the
RGB tests, Lagged Sums Test, for example, has 33 different variants.

Diehard tests assessment count
SecureRandom Trivium Quadrivium

Dataset 1 2 3 1 2 3 1 2 3
Assessment
PASSED 19 17 16 16 19 17 18 16 18
WEAK 0 2 3 2 0 2 1 3 1
FAILED 000100000

Table 6. Summary of all Diehard tests assessments.

All generators had one data set that was considered weak for the OPSO test, SecureRandom
dataset 3, Trivium dataset 1 and Quadrivium dataset 2. The Binary Matrix Rank Test 32x32 was
also a common problem for all generators. Trivium failed this test with dataset 1 and was
considered weak for dataset 3. Quadrivium received a weak assessment for data sets 1 and 2
while SecureRandom received a weak assessment for data set 3. The other weak assessments are
as follows: SecureRandom dataset 2, Count the ones test for byte-streams and bytes;
SecureRandom dataset 3, Count the ones test for bytes; Trivium dataset 1, Craps 2 test; Trivium
dataset 3, Count the ones test for bytes; Quadrivium dataset 2, Runs test; Quadrivium dataset 3,
OQSO. (Refer to Table 6 and Appendix C for test descriptions.)

RGB tests assessment count
SecureRandom Trivium Quadrivium

Dataset 123123123

Assessment
PASSED 47 46 46 36 43 30 46 42 42
WEAK 744 16 6 18 694
FAILED 7 11 11 9 12 13 9 10 15

Table 7. Summary of RGB tests assessments.

43

There were four RGB tests that all generators failed consistently. They are the DAB Byte
Distribution, DAB Monobit 2 and, Lagged Sums 29 and 31 tests. Individually, SecureRandom
consistently failed the Lagged Sums 23 test; Trivium always failed Lagged Sums 9 and 23 tests;
and as for Quadrivium, the Lagged Sums 9, 14, 19 and 24 tests always resulted in failure. All
other failures are some variant of the Lagged Sums Test. For Trivium and Quadrivium, the weak
assessments were mainly Lagged Sums Test variants and a couple of Bit Distribution tests.
SecureRandom weak assessments were only Lagged Sums Tests. Trivium was the only generator
to have a consistent weak assessment for a particular test. It was the Lagged Sums 15 test.
(Refer to Table 7 and Appendix C for test descriptions.)

Generation time in milliseconds
SecureRandom Trivium Quadrivium

Dataset 1 2442 1775836 2394939
Dataset 2 2652 1807494 2598758
Dataset 3 2653 1777542 2409478

Table 8. Generation times for 122.88 million bytes.

In Table 8, we see that the generation times of Trivium and Quadrivium are significantly slower
than SecureRandom. This can be attributed to the fact the implementations of Trivium and
Quadrivium are non-optimized. The codes, see Appendix A and B, are based on direct
translations of the pseudocode presented in [DP05]. SecureRandom is an official implementation
available in the Java Library therefore its code has been created with efficiency.

44

Conclusion

In this paper, we presented a revised model of Trivium that focused on improving the selection
of state bits. We considered the entire state of Trivium to make improvements versus its
individual registers in previous works. We were aware that the unpredictability of pseudorandom
sequences is directly correlated to the entire set of state bits selected to yield a stream bits and
proposed a solution in our model.

The analyses we presented indicates that Quadrivium statistically outperforms Trivium
exhibiting more characteristics of uniformity. Referring to Tables 3 and 4, we see that the
Quadrivium had more p-values closer to one overall and amongst individual tests. Quadrivium
also had a higher passing rate on the Diehard and RGB tests. (See Tables 6 and 7.) Additionally,
Quadrivium performs relatively as well as SecureRandom which employs a complex generating
algorithm. There was not a significant difference in the average number of sequences passing the
STS; or the average number of passed, weak and failed assessments for the Diehard and RGB
tests. We can also conclude that Quadrivium consistently performs well on tests that checks for
linear complexity, pattern matching and pseudorandomness on a sequence-level.

Even though Quadrivium shows potential, there are some lacking points about the generator.
First, Quadrivium did not do substantially well on tests that check for correlation on a bit level.
We also see in Table 8 that the generation time for Quadrivium is the slowest comparing to the
other generators. Future work can be to find solutions to lessen bit correlations as well as
implementing optimized algorithms in the code. Potential research could also be to determine the
period and security of Quadrivium.

45

Bibliography

[Barak] Barak B. "Lecture 4 - Computational Indistinguishability ..." Lecture 4 -
Computational Indistinguishability, Pseudorandom Generators. Princeton
University, n.d. Web. 12 Nov. 2016.

[Bog+07] Bogdanov A, et al. "PRESENT: An ultra-lightweight block cipher." International
Workshop on Cryptographic Hardware and Embedded Systems. Springer Berlin
Heidelberg, 2007.

[Boon] Boon M. "Lecture 5: Random-number Generators." 2WB05 Simulation.
Eindhoven University of Technology. 6 Dec. 2012. Simulation Lecture 5. Web.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor,
Advances in Cryptology - EUROCRYPT 2006, volume 4004 of Lecture Notes in
Computer Science, pages 409^-26, St. Petersburg, Russia, May 28 - June 1, 2006.
Springer, Berlin, Germany.

[Debian] Debian.org. (2008). Debian — Security Information — DSA-1571-1 openssl.
[online] Available at: http://www.debian.org/security/2008/dsa-1571 [Accessed 1
Oct. 2015],

[dHG08] de Koning Gans G, Hoepman J, and Garcia F. "A Practical Attack on the
MIFARE Classic." Smart Card Research and Advanced Applications. Springer
Berlin Heidelberg, 2008. 267-282.

[Dodis] Dodis Y. "Randomness and Cryptography." Microsoft PowerPoint - Randoml.
Web.

[DP05] DeCanniere C and Preneel B. "Trivium specifications. eSTREAM." ECRYPT
Stream Cipher Project, Report 30.2005 (2005): 266.

[DeC06] De Canniere C. "Trivium: A stream cipher construction inspired by block cipher
design principles." International Conference on Information Security. Springer
Berlin Heidelberg, 2006.

[DPR+13] Dodis Y, Pointcheval D, Ruhault S, Vergnaud D and Wichs D, "Security analysis
of pseudo-random generators with input: /dev/random is not robust", 2013.

[DwoOl] Dworkin, M. Recommendation for block cipher modes of operation, methods and
techniques. No. NIST-SP-800-38A. National Institute of Standards and
Technology Gaithersburg MD Computer Security Div, 2001.

[ECS05] Eastlake D, Crocker S and Schiller J. "RFC 4086 Randomness Requirements for
Security, June 2005." tools, ietf. org/html/rfc4086.

46

[FIPS01] PUB, FIPS. Security Requirementsfor Cryptographic Modules. Diss. National

Institute of Standards and Technology, 2001.

[FN03] Ferguson N and Schneier B. Practical cryptography. Vol. 23. New York: Wiley,

2003.

[GollO] Goldreich O. “A primer on pseudorandom generators.” Vol. 55. American
Mathematical Society, 2010.

[Gol90] Goldreich O. "A note on computational indistinguishability." Information
Processing Letters 34.6 (1990): 277-281.

[GPR06] Gutterman Z, Pinkas B and Reinman T. “Analysis of the Linux random number
generator.” In 2006 IEEE Symposium on Security and Privacy, pages 371-385,
Berkeley, California, USA, May 21-24, 2006. IEEE Computer Society Press.

[GW96] Goldberg I and Wagner D. "Randomness and the Netscape browser."Dr Dobb's
Journal-Software Tools for the Professional Programmer 21.1 (1996): 66-71.

[Jag08] Jagannatam A. "Mersenne Twister-A Pseudo Random Number Generator and its

variants." George Mason University, Department ofElectrical and Computer

Engineering (2008).

[KSW+98] Kelsey J, Schneier B., Wagner D and Hall C. "Cryptanalytic attacks on
pseudorandom number generators". FSE. Lecture Notes in Computer Science,
Springer (1998)

[Mar03] Marsaglia, George. "Xorshift mgs." Journal ofStatistical Software 8.14 (2003):

1-6.

[MBT+17] McKay K, Bassham L, Turan and Mouha N. "Report on lightweight
cryptography." NISTIR 8114 (2017).

[MCC+06] McEvoy, Robert, et al. "Fortuna: cryptographically secure pseudo-random

number generation in software and hardware." Irish Signals and Systems

Conference, 2006. IET. IET, 2006.

[MGH13] Melia-Segui J, Garcia-Alfaro J and Herrera-Joancomarti J. "J3Gen: A PRNG for
low-cost passive RFID." Sensors 13.3 (2013): 3816-3830.

[MK92] Matsumoto M and Kurita Y. "Twisted GFSR generators."ACM Transactions on

Modeling and Computer Simulation (TOMACS) 2.3 (1992): 179-194.

[MMS13] Michaelis K, Meyer C and Schwenk J. "Randomly failed! The state of
randomness in current Java implementations." Topics in Cryptology-CT-RSA
2013. Springer Berlin Heidelberg, 2013. 129-144.

47

[OracleRa] "Random (Java Platform SE 8)." Random (Java Platform SE 8), Web. N.p., n.d.
01 May 2016.

[OracleSR] "SecureRandom (Java Platform SE 8)." SecureRandom (Java Platform SE 8).
N.p., n.d. Web. 15 May 2016.

[PP10] Paar. Christof and Jan Pelzl. "Stream Ciphers." Understanding Cryptography. S.I.:
Springer, 2010. 29-54. Print.

[PS96] Pincus S and Singer B. "Randomness and degrees of irregularity." Proceedings of
the National Academy ofSciences 93.5 (1996): 2083-2088.

[Roe05] Roeck A. "Pseudorandom number generators for cryptographic applications".
2005.

[RukOO] Rukhin, Andrew L. "Approximate entropy for testing randomness." Journal of
Applied Probability 37.1 (2000): 88-100.

[Ruk+10] Rukhin A, et al. "A statistical test suite for random and pseudorandom number
generators for cryptographic applications Revision la. NIST Special Publication
800-22". 2010.

[Sha48] Shannon C. "A mathematical theory of communication." ACM
Mobile Computing and Communications Review 5.1 (2001): 3-55.

SIGMOBILE

[Stall] Stamp M. "Random Numbers." Information Security: Principles and Practice. 2nd
ed. Hoboken, NJ: Wiley-Interscience, 2011. 145-46. Print.

[TCL09] Tian Y, Chen G and Li J. "On the design of Trivium." IACR Cryptology ePrint
Archive 2009 (2009): 431.

[Vadl2] Vadhan S, “Pseudorandomness." Foundations and Trends in Theoretical
Computer Science: Vol. 7: No. 1-3, pp 1-336, 2012.

[Von51] Von Neumann J. "13. Various Techniques Used in Connection With Random
Digits." (1951).

[Xiannong] Xiannong M. "Linear Congruential Method." Linear Congruential Method.
Bucknell University, 18 Oct. 2002. Web. 10 Sept. 2016.

[ZG12] Zaman, J. K. M., and Ranjan Ghosh. "A review study ofNIST Statistical Test
Suite: Development of an indigenous computer package." arXiv preprint
arXiv: 1208.5740 (2012).

Appendix A

Quadrivium.java

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.BitSet;
import java.util.logging.Level;
import j ava.util.logging.Logger;
import j avax.crypto.KeyGenerator;
import javax.crypto.SecretKey;

/ * *

* This class provides a pseudorandom number generator.
* @author Latoya
*/

public class Quadrivium {

private BitSet state = new BitSet (384);

public Quadrivium() {
init ();

}

public Quadrivium(byte[] key, byte[] IV) {
init(key, IV);

}

/* Get key and IV, initialize generator.*/

private void init() {
final byte[] key = new byte[10];
final byte[] IV = new byte[10];
Key.generateKey(key);
InitVector.getIV(IV);
init(key, IV);

}//end init method

/*Copies key and IV to state, then initialize generator.*/

private void init(byte[] key, byte[] IV) {
byte[] bytebuffer = new byte[48];
int currIndex = 0;
int index = 0;

//load Register A
for (int i = 0; i < key.length; i++) {

bytebuffer[currlndex++] = key[i];

}

49

bytebuffer[currlndex++] = 0;
bytebuffer[currlndex++] = 0;

//copy the first two bits of the IV
byte joint = IV[index++];
bytebuffer[currlndex++] = (byte) ((joint & Oxff) >» 2) ;

//copy the rest of IV to register B
while (index < IV.length) {

byte tmp = IV[index - 1];
byte tmp2 = IV[index];

tmp = (byte) (tmp << 6);
tmp2 = (byte) ((tmp & Oxff) >>> 2);
//bit addition
int copy = tmp + tmp2;
//new byte
bytebuffer[currlndex++] = (byte) copy;
index++;

}

joint = IV[IV.length - 1];
bytebuffer[currlndex++] = (byte) (joint « 6);

//Register C
while (currlndex < 35) {

bytebuffer[currlndex++] = 0;

bytebuffer[currlndex++] = 1;

//Register D
while (currlndex < bytebuffer.length - 1) {

bytebuffer[currlndex++] = -1;

}

bytebuffer[currlndex] = -16;
state = BitSet.valueOf(bytebuffer);
rotate ();

}//end init method (with key and IV input)

/* Generates specified number of bytes and update state.*/

public synchronized void getBytes(byte[] output) {
boolean tl, t2, t3, t4;
boolean[] z = new boolean[8];
int i = 0, index = 0, count = 0, b = output.length * 8;

boolean s49, s69, s96, s97, s98,
sl47, sl71, sl93, si 94, sl95,
s243, s264, s288, s289, s290,

50

s337, s358, s382, s383, s384;

while (count < b) {
s49 = state.get(48);
s69 = state.get (68);
s96 = state.get(95);
s97 = state.get(96);
s98 = state.get(97);
sl47 = state.get (146);
sl71 = state.get(170);
sl93 = state.get(192);
sl94 = state.get (193);
sl95 = state.get(194);
s243 = state.get(242);
s264 = state.get(263);
s288 = state.get(287);
s289 = state.get(288);
s290 = state.get(289);
s337 = state.get (336);
s358 = state.get(358);
s382 = state.get (381);
s383 = state.get(382);
s384 = state.get (383);

//generate bit
tl = s49 A s 9 8;
t2 = sl47 A s195;
t3 = s243 A s290;
t4 = s337 A s384;
z[i] = tl A t2 A t3 A t4;

//update
tl = s96 & s97 A s171;
t2 = sl93 & sl94 A s358;
t3 = s288 & s289 A s69;
t4 = s382 & s383 A s264;

//shift register A
for (int j = 96; j >= 0; j--) {

state.set (j + 1, state.get (j));
}

state.set (0, t2);
//shift register B
for (int j = 193; j >= 98; j—) {

state.set (j + 1, state.get(j));
}
state.set (98, t4);
//shift register C
for (int j = 288; j >= 195; j—) {

state.set(j + 1, state.get (j));

51

}
state.set (195, tl);

//shift register D
for (int j = 382; j >= 290; j—) {

state.set (j + 1, state.get(j));

}
state.set (290, t3);
i++;

//copy generated byte to state
if (i == 8) {

for (int j = 0; j < 8; j++) {

if (z [j1) {
output[index] |= (byte) (1 « (7 - j));
z[j] = false;//reset

index++;
i = 0; //reset z index

}

count++;

}

}//end getBytes method

/* Rotates the state bits over four cycles. */

private void rotate () {
boolean tl, t2, t3, t4;
int i = 0;
int cycles = (4 * state.length());

boolean s49, s69, s96, s97, s98,
sl47, sl71, sl93, sl94, sl95,
s243, s264, s288, s289, s2 90,
s337, s358, s382, s383, s 3 8 4 ;

while (i <= cycles) {
s49 = state.get(48);
s69 = state.get(68);
s96 = state.get (95);
s97 = state.get(96);
s98 = state.get(97);
sl47 = state.get(146)
sl71 = state.get (170)
sl93 = state.get (192)
sl94 = state.get(193)
sl95 = state.get (194)
s243 = state.get(242)
s264 = state.get (263)

s288
s289
s290
s337
s358
s382
s383
s384

tl =
t2 =
t3 =
t4 =

=
=
=
=
=
=
=
=

state.get (287);
state.get (288);
state.get (289);
state.get (336);
state.get (358);
state.get (381);
state.get(382);
state.get(383);

s49 A s96 & s97 A s98 A sl71;
sl47 A sl93 & sl94 A sl95 A s358;
s243 A s288 & s289 A s290 A s69;
s337 A s382 & s383 A s384 A s264;

//shift register A
for (int j = 96; j >= 0; j—) {

state.set (j + 1, state.get (j));
}

state.set(0, t2); //si
//shift register B
for (int j = 193; j >= 98; j—) {

state.set(j + 1, state.get(j));
}
state.set (98, t4);//s99
//shift register C
for (int j = 288; j >= 195; j—) {

state.set(j + 1, state.get (j));
}
state.set (195, tl);//sl96
//shift register D
for (int j = 382; j >= 290; j—) {

state.set (j + 1, state.get (j));
}
state.set (290, t3);//s291
i++ ;

}

}//end rotate method

}//end Quadrivium Class

Appendix B

Trivium.java

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.BitSet;
import java.util.logging.Level;
import java.util.logging.Logger;
import j avax.crypto.KeyGenerator;
import javax.crypto.SecretKey;

/**

* This class provides a pseudorandom number generator.
* @author Latoya
*/

public class Trivium {

private BitSet state = new BitSet (288);

public Trivium() {
init ();

}

public Trivium(byte[] key, byte[] IV) {
init(key, IV);

}

/* Get key and IV, initialize generator.*/
private void init() {

final byte[] key = new byte[10];
final byte[] IV = new byte[10];
Key.generateKey(key);
InitVector.getlV(IV);
init(key, IV);

}//end init method

/*Copies key and IV to state, then initialize generator.*/

private void init(byte[] key, byte[] IV) {
byte[] bytebuffer = new byte[36];
int currlndex = 0;
int index = 0;

//load Register A
for (int i = 0; i < key.length; i++) {

bytebuffer[currlndex++] = key[i];

}

bytebuffer[currlndex++] 0;

//copy the first five bits of the IV
byte joint = IV[index++];
bytebuffer [currlndex++] = (byte) ((joint & Oxff) »> 5)

//copy the rest of IV to register B
while (index < IV.length) {

byte tmp = IV[index - 1];
byte tmp2 = IV[index];

tmp = (byte) (tmp « 3);
tmp2 = (byte) ((tmp & Oxff) >» 5) ;
//bit addition
int copy = tmp + tmp2;
//new byte
bytebuffer[currlndex++] = (byte) copy;
index++;

}

joint = IV[IV.length - 1] ;
bytebuffer[currlndex++] = (byte) (joint « 3);

//Register C
while (currlndex < bytebuffer.length - 1) {

bytebuffer[currlndex++] = 0;

}

bytebuffer[currlndex++] = 7;

state = BitSet.valueOf(bytebuffer);
rotate ();

}//end init method (with key and IV input)

/* Generates specified number of bytes and update state.*/

public synchronized void getBytes(byte[] output) {
boolean tl, t2, t3;
boolean[] z = new boolean [8];
int i = 0, index = 0, count = 0, b = output.length * 8;

boolean s66, s69, s91, s92, s93, sl62, sl71, sl75,
sl7 6, sl77, s243, s264, s286, s2 87, s288;

while (count < b) {
s66 = state.get(65);
s69 = state.get(68);
s91 = state.get (90);
s92 = state.get(91);
s93 = state.get(92);

55

sl62 = state.get(161);
sl71 = state.get(170);
sl75 = state.get(174);
sl76 = state.get(175);
sl77 = state.get(176);
s243 = state.get(242);
s264 = state.get(263);
s286 = state.get(285);
s287 = state.get (286);
s288 = state.get(287);
//generate bit
tl = s66 A s93;
t2 = si62 A s177;
t3 = s243 A s288;
z[i] = tl A t2 A t3;
//update
tl = tl A s91 & s92 A s171;
t2 = t2 A sl75 & sl76 A s264;
t3 = t3 A s286 & s287 A s69;
//shift register A
for (int j = 91; j >= 0; j—) {

state.set(j + 1, state.get(j));
}
state.set(0, t3); //si
//shift register B
for (int j = 175; j >= 93; j—) {

state.set(j + 1, state.get (j));
}
state.set(93, tl);//s94
//shift register C
for (int j = 286; j >= 177; j--) {

state.set(j + 1, state.get(j));
}
state.set(177, t2);//sl78

i++;

//copy generated byte to state
if (i == 8) {

for (int j = 0; j < 8; j++) {
if (z [j]) {

output[index] |= (byte) (1 « (7 — j));
z[j] = false;//reset

}
}
index++;
i = 0; //reset z index

}
count++;

56

}//end getBytes method

/* Rotates the state bits over four cycles. */

private void rotate () {
boolean tl, t2, t3;
int i = 0;
int cycles = (4 * state.length());

boolean s66, s69, s91, s92, s93, sl62 sl71 sl75,
sl7 6, sl77, s243, s264, s286, s287, s 2 8 8 ;

while (i <= cycles) {
s66 = state.get(65);
s69 = state.get(68);
s91 = state.get(90);
s92 = state.get(91);
s93 = state.get(92);
sl62 = state.get(161)
sl71 = state.get(170)
sl75 = state.get(174)
sl76 = state.get(175)
sl77 = state.get(176)
s243 = state.get(242)
s264 = state.get(263)
s286 = state.get(285)
s287 = state.get(286)
s288 = state.get(287)

tl = s66 A s91 & s92 A s93 A sl71;
t2 = sl62 A sl75 & sl76 A sl77 A s264;
t3 = s243 A s286 & s287 A s288 A s69;

//shift register A
for (int j = 91; j >= 0; j—) {

state.set(j + 1, state.get(j));

}
state.set(0, t3); //si

//shift register B
for (int j = 175; j >= 93; j—) {

state.set(j + 1, state.get(j));

}
state.set(93, tl);//s94

//shift register C
for (int j = 286; j >= 177; j—) {

state.set(j + 1, state.get (j));

}

58

Appendix C

Statistical Test Descriptions

NIST Statistical Test Suite

Frequency (Monobit) Test
The Frequency (Monobit) Test verifies that the existence of zeroes and ones—bit-wise— are
equally proportional. In relation to the other tests in the suite, this is by far the most important; if
an ensemble cannot pass this test, most likely it will not pass the other fifteen. Remember, one of
the assumptions of truly random sequence is uniform distribution of zeroes and ones and another
is scalability. Thus the number of zeroes and ones must be balanced bit-wise in order to be
balanced word-wise. The test takes a sequence and converts all the zero bits to a value of
negative one (-1) and all the one bits to positive one (+1). The values are all added together. This
value will be used to compute the test statistic. After the test statistic is determined, it is used to
calculate the P-value. If the P-value is greater than or equal to 0.01 the sequence is said to be
random.

Frequency Test within a Block
This assessment focuses on the proportions of the 1 -bit in the subsequences of a random quantity.
The random quantity is first divided into subsequences (or blocks) all of equal length. Leftover
bits are discarded. The fraction of ones in each subsequence is calculated. These values are used
to determine the chi-squared statistic. Lastly, the P-value is calculated using the chi-squared
statistic. Like the Frequency (Monobit) Test, the P-value must be greater than or equal to 0.01 to
be declared random.

Runs Test
A run is defined as a chain of identical bits. In this test, a run begins at the first bit whose
preceding bit is of opposite value and terminates when the immediately successive bit is of
opposite value; its length is the number of bits in the said run. The Runs Test determines if a
sequence switches too quickly or too slowly between zeroes and ones. The Frequency test must
be performed before conducting the Runs Test. The next step is to calculate the fraction of ones
in the sequence. Now, if the sequence passed the Frequency test and the fraction of ones is
within a certain boundary described by the literature, there is no need to proceed with this
assessment. If the sequence failed to pass this bound, the test statistic is calculated followed by
the P-value. The P-value here must also be less than 0.01 to be considered non-random.

Test for the Longest Runs of Ones in a Block
The longest runs of ones in subsequences of identical lengths are identified and recorded. A
random quantity is partitioned into sequences of ̂ -length. (Remainder bits are discarded.) Then a
table is drawn with the subsequences’ length and their longest runs length. Next, determine the
chi-square statistic and the P-value. A large chi-square value indicates that the sequence contains
clusters of ones [Ruk+10], A sequence is random if the P-value is greater than or equal to 0.01.

Binary Matrix Rank Test
This assessment is a part of another common PRNG testing suite, Diehard Battery of tests. The
Binary Matrix rank test verifies there is linearity within subsequences. The procedure constructs

59

matrices of consecutive bits in the sequence, and then looks for linearity between the rows and
the columns of the matrices. The deviation of the matrices ranks from what is expected from a
truly random matrix rank is the main result of determination. The test calculates a chi-square
statistic and a P-value to determine if the examined sequence is random. Large value of chi-
square denotes that there is a significant difference between the rank distributions of the
generated sequence with that of a truly random sequence.

Discrete Fourier Transform (Spectral) Test
This test is based on the discrete Fourier transform, a function that maps an «--divided sequence
of ra-length to n number ofm-length sequences in discrete time Fourier transform. They are used
to reveal information about periodicities of data as well as the degree he purpose of this test is to
identify recurring patterns within close proximity of one another. The test process can be found
in the literature.

Non-overlapping Template Matching Test
Blocks of length n are identified and checked if their occurrences agree with what is expected in
a truly random sequence. This helps to identify if a generator outputs a significant number of
irregular patterns. The testing begins by creating an n-bit window and aligning it to the first bit of
the tested sequence. The window is looking for a specific pattern. If the pattern is not detected,
the window shifts one bit to the left. If a pattern is detected, the window shifts n-bits to the left.
[ZG12]

Overlapping Template Matching Test
This assessment is akin to the Non-overlapping Template Matching test but the difference is the
window always shift one bit to the left regardless if a pattern is found or not.

Note: The following three tests involve the notion of compression. Compressibility is the
capability of an expression to be simplified to a coherent description or algorithm. Hence, it is
desirable for a random sequence to be uncompressible.

Maurer’s “Universal Statistical” Test
This test focuses on the number of w-bit blocks linking two identical /7-bit permutations in a
sequence. First, a sequence is divided into n-bit blocks and unused bits are discarded. Then, the
sequence is separated into two parts: an initialization section (the first set of blocks in the
sequence) and a test section (the remaining blocks). The test section contains more blocks than
the initialization section. For each section, a table is drawn with columns of all possible n-bit
patterns and rows of block indices. The last occurrence of every possible pattern is recorded at
each block. Once the tables are completed the cumulative sum is taken; it includes the natural
logs of the number of blocks linking two identical patterns. The main function of the test is to
determine “if a sequence can be significantly compressed without loss of information” [Ruk+10],

Lempel-Ziv Compression Test13
The Lempel-Ziv Compression Test determines to what degree a sequence can be simplified, in
other words, compressed. The process begins by making a dictionary of all the unique bit

13This test is included in the NIST Statistical Test Suite document but is not a part of the actual program.

60

patterns in the tested sequence. The total number of distinct patterns, theoretical mean and the
variance are used to determine the P-value. If the P-value is less than 0.01, then the sequence is
considerably compressible and therefore classified as non-random.

Linear Complexity Test
This evaluation perfectly divides a sequence into n-bit blocks and performs the Berlekamp-
Massey Algorithm on each block. The algorithm is used to find the shortest LFSR within a block.
A very short LFSRs indicate that the sequence is not random and the bits are highly correlated.

The following two tests base their analysis on intersecting patterns of length n in a tested
sequence.

Serial Test
This test counts and compares the occurrences of 2 m-bit overlapping patterns to the expected
value of a uniformly distributed sequence, a sequence passes this test if the occurrences is close
to the expected value.

Approximate Entropy Test
Approximate entropy “measures the logarithmic frequency with which blocks of length m that
are close together remain close together for blocks augmented by one position” [PB96], In other
words, in a sequence of length n, the frequency of overlapping patterns of m-bit length in
comparison to overlapping patterns of (m+l)-bit length are quantified. Entropy— here—is the
repetition of bit patterns. The difference between the entropies of m-bits and (m+l)-bits must be
large to deem the sequence random. Sequences that are random have an approximate entropy
value close to In 2. [RukOO]

Cumulative Sums Test
The Cumulative Sums Test evaluates if the occurrences of ones and zeroes are mixed evenly
throughout the tested sequence. The desired result is a random walk, the cumulative sum of
subsequences, is near zero; this suggests that the sequence is random.

Random Excursions Test
This analysis checks if the visits to a particular cumulative sums reflect truly random behavior.
There are eight types of cumulative sums ranging from -4 to 4, excluding zero. For each type, a
separate test must be given. So in actuality, the Random Excursion Test is a set of eight tests.

Random Excursions Variant Test
Like the Random Excursions test, this assessment also checks the visits to particular cumulative
sums. Eighteen tests are performed to assess the cumulative sums from negative nine to positive
nine.

Diehard Battery of Test

Birthday Spacings Test
This assessment uses principles from the birthday problem, an argument in probability theory
that claims in a room filled with n number of individuals, two will have the same birthdays. In
relation to the tested sequence, the calendar days are 224 and the number of birthdays is 29. The

61

number of repeated birthdays in a calendar is tabulated. The test produces p-values from the chi-
square test and KSTEST.

The Overlapping 5-Permutation Test
This test counts the permutations of a set of five consecutive integers. The integers are all 32 bits
in length and are a part of a larger sequence of one million integers. A tally is taken to note the
occurrence of each permutation.

Binary Rank Tests
Depending on the test, a number of bits are selected to form a matrix. The rows are then studied
to see if they are linearly independent. The maximum number of linearly independent rows is
used to determine the rank of the matrix. The ranks of the matrices used in a given test are tallied.
A chi-square test is performed on rank counts greater than a certain threshold.

Binary Rank Test: 31x31 matrices
This test requires forty thousand matrices of the said size. Each matrix consists of 31 random
integers; each integer of 32-bit length; and the leftmost 31 bits of an integer form a column (or
row) in the matrix. A count is taken for the following ranks: ranks less than or equal to 28, ranks
of 29, ranks of 30 and ranks of 31. Lastly, the chi-square test is executed on four counts.

Binary Rank Test: 32x32 matrices
Like the aforementioned Binary Rank Test, forty thousand matrices are used in this assessment.
Each matrix consists of thirty two 32-bit integers. A chi-square test is performed on counts of
ranks less than or equal to 29, ranks of 30, ranks of 31 and ranks of 32.

Binary Rank Test: 6x8 matrices
First, six 32-bit integers are random selected. Then a sequence of 8-bits is selected from each
integer. The six bytes are then used to form a matrix for analysis. A hundred thousand matrices
are ranked and tallied. A chi-square test is performed on ranks less than or equal to 4, ranks of 5
and ranks of 6.

Bitstream Test
This test counts the number of 20-letter word missing in a stream of 221 overlapping words. A
letter is represented by a single bit, 0 or 1 .The test is carried out twenty times to determine a p-
value.

OPSO, OQSO and DNA Tests
These tests count the number of n-letter words missing from the sequence under examination.
OPSO is concerned with 2-letter words; OQSO considers 4-letter words and DNA 10-letter
words.

Count the Is Test for Byte-Streams and Specific Bytes
A byte is mapped to a letter on the set (A, B, C, D, E}. Each letter represents a byte with a
specific number of ones. A is a byte with zero, one or two Is; B is three Is, C is four Is, D is five
Is and E is six, seven or eight Is. After the transformation, a combination of 5-letter words is
formed with replacement. Next, each word’s frequency is totaled. For the byte stream analysis,

62

the test sequence is parsed into 8-bit subsequences. For the specific bytes analysis, the test
sequence is parsed into 32-bit integers. A subsequence of 8 bits is then taken from each integer to
carry out the test.

This is a Parking Lot Test
This assessment takes a square of 100 x 100 and tries to randomly park as many unit circles in
12,000 attempts. The number of cars parked without a collision is totaled. A crash is the parking
of a car in a spot that is already occupied.

Minimum Distance Test
This assessment takes a square of 104 x 104 and haphazardly place eight thousand points in the
square. Then, the minimum distance between (n2 - n)/2 pairs of points is determined. Here n
equals 8000. This process is executed a total of one hundred times to collect a minimum distance
value. Finally, KSTEST is performed on the p-values collected.

3DSpheres Test
This assessment takes a cube with length of on each edge. Four thousand points are randomly
placed in the cube. Each point is the center of a sphere with the radius being distance to the
closest point. The smallest sphere’s radius is exponentially distributed. This process is repeated
to total twenty times. A KSTEST is performed on the p-values collected from all runs.

Squeeze Test
Random floats on [0, 1) are multiplied by 231. The test counts how many random floats are used
to achieve a value of 1. This procedure is carried out 100,000 times. The counts are tallied and a
chi-square test is carried out.

Overlapping Sums Test
First, a long sequence of uniform variables is formed by floated integers. The overlapping sum
consists of 100 consecutive uniform variables.

Runs Test
This is a standard test included in the suite. It counts the frequencies of runs, a consecutive
sequence of identical bits, forward and backward in an input file.

Craps Test
A game of craps is played 200,000 times. The wins and throws per game is tallied. A chi-square
test is performed on the occurrence of the number of throws value.

Dieharder: A Random Number Test Suite

Bit Distribution Test
This test tabulates the frequencies of independent «-bit long sequences. The distribution acquired
from the frequencies is compared to the theoretical binomial histogram f a uniform distribution.
Standard testing procedures requires the sequence length to be greater than zero but lest than
twelve. Sequences longer than twelve requires the sample size to be increased. The p-value is
obtained by performing chi-square testing.

63

Generalized Minimum Distance Test
This test is a generalized version of the 2d sphere test and 3d sphere test available in Diehard
battery of tests. This test can be administered using the suggested d (dimension) values of 2, 3, 4
and 5. Comparing to the original versions found in diehard, this test allows control over three
parameters that are static in its original form. Analysts can set the parameters for the number of
points used for a minimum distance sample; the number of test runs; and the number of
dimensions.

Permutations Test
This test counts the permutations of some arbitrary number of integers in the tested sequence.
The integers are expected to occur (n!) times. A chi-square test is performed on the count.

Lagged Sums Test
This assessment checks for lagged correlation, a connection between randomly generated
sequences on a bit level. The values that deviate from uniform are sampled and summed. The
mean and standard deviation the sample is computed, the p-value is then calculated and finally a
KSTest is performed on the p-values.

The Kolmogorov-Smirnov Test Test
A Kolmogorov-Smirnov Test of all the values collected from the KSTest of the other tests in the
suite.

DAB Byte Distribution Test
In this assessment, three non-overlapping bytes are sampled from three words. These words are
consecutive outputs produced from a random number generator. In cases where the words are too
small, then the sampled bytes will be overlapping. The p-value is obtained by using a chi-square
fitting test.

DCT (Frequency Analysis) Test
This test uses discrete cosine transform (DCT) on samples from a generator. (DCT is a linear
function written in terms of a sum of cosines.) These values are collected and used to check for
uniformity or independence between samples.

DAB Fill Tree Test
The purpose of this test is to check if a generator shows bias between low, middle or high bytes.
The procedure starts by constructing a binary tree of fixed length and inserting subsequences
from the output until the tree reaches capacity. The subsequences are rotated a number of times
to determine if there is bias.

DAB Fill Tree 2 Test
This test is like the DAB Fill tree test but operates on a bit level. For every bit of the tested
sequence, the test takes a step right or left for zero-bits and one-bits, respectively.

| have submitted this thesis in partial fulfillment of the requirements for the degree ofvMaster of
Science. \

Assistant Professor of Computer Science, Thesis Adviser

Date

Date ■ Lydia Ray
Associate Professor of Computer Science

	A Trivium-Inspired Pseudorandom Number Generator with a Statistical Comparison to the Randomness of SecureRandom and Trivium
	Recommended Citation

	A Trivium-Inspired Pseudorandom Number Generator with a Statistical Comparison to the Randomness of SecureRandom and Trivium

