AUTOMORPHISMS OF NORMAL TRANSFORMATION SEMIGROUPS

by INESSA LEVI

(Received 19th June 1984)

1. Introduction and preliminaries

Let \(X \) be an infinite set, \(\mathcal{G}_X \) be the group of all bijections of \(X \) and \(S \) be a semigroup of total transformations of \(X \) with the composition of transformations \(f \) and \(g \) in \(S \) defined by the formula

\[
fg(x) = f(g(x)), \quad \text{where} \quad x \in X.
\]

We say that \(S \) is a \(\mathcal{G}_X \)-normal semigroup if

\[
hSh^{-1} = S, \quad \text{for all} \quad h \in \mathcal{G}_X.
\]

The full transformation semigroup \(T_X \), the semigroups of all 1–1 and all onto transformations and the group \(\mathcal{G}_X \) itself, are examples of \(\mathcal{G}_X \)-normal semigroups.

If \(S \) is a \(\mathcal{G}_X \)-normal semigroup, then for each \(h \in \mathcal{G}_X \), the map \(\phi \) of \(S \) given by

\[
\phi(f) = hfh^{-1} \quad (f \in S)
\]

is an automorphism of \(S \), specifically an inner automorphism of \(S \). Our purpose is to prove the following:

Theorem 1.1. Every automorphism of a \(\mathcal{G}_X \)-normal semigroup is inner.

The subject of this paper was suggested to the author by G. R. Wood.

The question of whether inner automorphisms exhaust all automorphisms of a \(\mathcal{G}_X \)-normal semigroup has attracted the attention of a number of authors. In 1937 Schreier [10] was the first to give a positive answer for \(T_X \). Then Malcev [6] extended this result to every ideal of \(T_X \). Next Sullivan [12] generalized this work and confirmed that if a semigroup contains all constant transformations (in particular if a \(\mathcal{G}_X \)-normal semigroup contains a constant transformation) then it possesses only inner automorphisms, while Fitzpatrick and Symons [3] showed this for a semigroup containing \(\mathcal{G}_X \). Schein [8, 9] discovered that a \(\mathcal{G}_X \)-normal semigroup of 1–1 transformations has only inner automorphisms (see [4] for the special case of Baer–Levi semigroups).

Our result subsumes all previously stated results for \(\mathcal{G}_X \)-normal semigroups and describes completely all automorphisms of every \(\mathcal{G}_X \)-normal transformation semigroup.
In this paper we use a technique which differs from those used by Sullivan [12] and Schein [8,9]. The essence is the production of certain maximal right (Section 2) and left (Section 3) ideals. We note a remarkable duality between properties of these right and left ideals.

For the purpose of our proof we partition all S_X-normal semigroups into three types:
1. Semigroups containing a constant map; and constant-free semigroups into:
 2. Semigroups of 1-1 transformations; and
 3. Constant-free semigroups containing a transformation which is not 1-1.

All automorphisms of semigroups of the first type are inner [12, Theorem 1], so we can restrict our attention to constant-free semigroups.

We begin with some general notes on S_X-normal semigroups.

For a function $f : X \to X$ we denote the range of f by $R(f) (= f(X))$ and the partition of f by $\pi(f) (= \{f^{-1}(x) : x \in R(f)\})$.

If S is an arbitrary semigroup of transformations, let

$$R(S) = \{R(f) : f \in S\} \quad \text{and} \quad \pi(S) = \{\pi(f) : f \in S\}.$$

We say that $R(S)$ $(\pi(S))$ is normal if for each $h \in S_X$

$$h(R(S)) = R(S) \quad (h(\pi(S)) = \pi(S)),$$

(by $h(R(S))$ we mean $\{h(A) : A \in R(S)\}$ and by $h(\pi(S))$ we mean $\{h(A) : A \in \pi(S)\}$, where $h(A) = \{h(a) : a \in A\}$).

Lemma 1.2. If S is a S_X-normal semigroup, then $R(S)$ and $\pi(S)$ are normal.

The proof is straightforward. \hfill \Box

We say that a semigroup S is trivial if $S = \{\Delta_X\}$, where Δ_X is the identity transformation of X. In what follows S is non-trivial.

Result 1.3. Every S_X-normal semigroup S is transitive.

Proof. Take arbitrary x, y in X. We construct f in S such that $f(x) = y$.

Firstly let x and y be distinct and suppose there exists a $g \in S$ with $g(x) = z \neq x$. If $z = y$ we let $f = g$, otherwise $(y,z)g(y,z)$ is the required f ((y,z) denotes the transposition interchanging y and z). To construct g, observe that since S is non-trivial there exists a $q \in S$ together with distinct u and v in X such that $q(u) = v$. If $u = x$ we let $g = q$, otherwise $g = (u,x)q(u,x)$.

Now suppose $y = x$, choose any p in S and let $p(x) = w$. If $w = x$ we let $f = p$. Otherwise choose $t \in S$ with $t(w) = x$ (using the first part of the proof), then $f = tp$ takes x to x as required. \hfill \Box

Remark 1.4. We exclude from our consideration S_X-normal subsemigroups of S_X, since they are all subgroups of S_X, and hence have only inner automorphisms [11].
2. \mathcal{G}_x-normal semigroups of 1-1 transformations

In this section S denotes a \mathcal{G}_x-normal semigroup of 1-1 transformations.

Definition 2.1. Let $x \in X$ and

$$\mathcal{R}_x = \{ r \in S : x \in X \setminus R(r) \}.$$

Then \mathcal{R}_x is a right ideal of S, which we call a point right ideal.

We will use the following observation based on the normality of $R(S)$ (Lemma 1.2) and the fact that S is not a subsemigroup of \mathcal{G}_x, that is $R(S)$ contains proper subsets of X.

Remark 2.2. Given $x, y \in X$ with $x \neq y$ there exists an A in $R(S)$ with $x \in X \setminus A$ and $y \in A$.

Lemma 2.3. Given $x, y \in X$ the following three statements are equivalent:

(i) $x = y$;

(ii) $x \neq y$.

(iii) $\mathcal{R}_x = \mathcal{R}_y$.

Proof. Implications (ii)\Rightarrow(iii) and (iii)\Rightarrow(i) are trivial. We show (i)\Rightarrow(ii). Suppose $x \neq y$ and choose an $A \in R(S)$ with $x \in X \setminus A$, $y \in A$ (Remark 2.2). If $f \in S$ with $R(f) = A$, then $f \in \mathcal{R}_x \setminus \mathcal{R}_y$, so $\mathcal{R}_x \neq \mathcal{R}_y$, proving (i)$\Rightarrow$(ii).

Define a map $\theta : X \to \{ \mathcal{R}_x : x \in X \}$ via $\theta(x) = \mathcal{R}_x$, each $x \in X$.

Lemma 2.4. θ is a bijection.

Proof. Clearly θ is onto and Lemma 2.3 ensures θ is 1-1.

Definition 2.5. Given distinct $f_1, f_2 \in S$ let

$$\mathcal{R}_{f_1, f_2} = \{ r \in S : f_1 r = f_2 r \}.$$

Then \mathcal{R}_{f_1, f_2} is a right ideal of S (possibly empty), which we call a function right ideal.

We will show (Result 2.8) that there always exist distinct f_1, f_2 in S such that \mathcal{R}_{f_1, f_2} is non-empty. However \mathcal{R}_{f_1, f_2} may be empty. Observe that given f_1 and f_2,

$$r \in \mathcal{R}_{f_1, f_2} \iff R(r) \subseteq \{ x \in X : f_1(x) = f_2(x) \}.$$

Hence if we choose f_1 and f_2 which are never equal, then $\mathcal{R}_{f_1, f_2} = \emptyset$.

Let S, for example, be the Baer–Levi semigroup of type $(|X|, |X|)$ [2], that is the semigroup of all 1-1 transformations f such that $|R(f)| = |X \setminus R(f)| = |X|$. Note that S is
\(\mathcal{D}^{X}\)-normal and choose \(f_1 \in S\), then \(X \setminus R(f_1) \subseteq R(S)\) (Lemma 1.2). If \(f_2 \in S\) with \(R(f_2) = X \setminus R(f_1)\), then \(\mathcal{R}_{f_1, f_2} = \emptyset\).

The following notation applies to an arbitrary \(\mathcal{D}^{X}\)-normal semigroup \(S\).

Notation 2.6. Let \(f_1, f_2\) be distinct transformations in \(S\). Then

\[
\mathcal{D}_{f_1, f_2} = \{ x \in X : f_1(x) \neq f_2(x) \}
\]

and

\[
D_{f_1, f_2} = \{ \{ f_1(x), f_2(x) \} : x \in \mathcal{D}_{f_1, f_2} \}.
\]

Returning to semigroups of 1-1 transformations, we now derive relationships between point right ideals and function right ideals.

Result 2.7. Let \(f_1, f_2 \in S\) with \(\mathcal{R}_{f_1, f_2} \neq \emptyset\). Then

\[
\mathcal{R}_{f_1, f_2} = \bigcap_{x \in \mathcal{D}_{f_1, f_2}} \mathcal{R}_x.
\]

Proof. Let \(r \in \mathcal{R}_{f_1, f_2}\), that is \(f_1 r = f_2 r\). If \(x \in \mathcal{D}_{f_1, f_2}\), or \(f_1(x) \neq f_2(x)\), then \(x \in X \setminus R(r)\), so \(r \in \mathcal{R}_x\), and since this is true for each \(x \in \mathcal{D}_{f_1, f_2}\), we conclude

\[
r \in \bigcap_{x \in \mathcal{D}_{f_1, f_2}} \mathcal{R}_x,
\]

or

\[
\mathcal{R}_{f_1, f_2} \subseteq \bigcap_{x \in \mathcal{D}_{f_1, f_2}} \mathcal{R}_x.
\]

Conversely, if

\[
r \in \bigcap_{x \in \mathcal{D}_{f_1, f_2}} \mathcal{R}_x,
\]

then for each \(y\) in \(R(r)\) we have \(y \in X \setminus \mathcal{D}_{f_1, f_2}\), or \(f_1(y) = f_2(y)\) and hence \(f_1 r = f_2 r\), that is \(r \in \mathcal{R}_{f_1, f_2}\), so

\[
\bigcap_{x \in \mathcal{D}_{f_1, f_2}} \mathcal{R}_x \subseteq \mathcal{R}_{f_1, f_2},
\]

which proves the desired equality. \(\square\)

Result 2.8. Given \(x \in X\) there exist \(f_1, f_2 \in S\) such that \(\mathcal{R}_x = \mathcal{R}_{f_1, f_2}\).

Proof. On account of Result 2.7 it is sufficient to construct \(f_1, f_2\) such that \(\mathcal{D}_{f_1, f_2} = \{x\}\).

Observe that there exists an \(f\) in \(S\) with

\[
|X \setminus R(f)| \geq 2.
\]
(For an arbitrary \(f \) in \(S \backslash \mathcal{G}_X \)

\[|X \setminus R(f^2)| = |X \setminus R(f)| + |X \setminus R(f)| \]

and we replace \(f \) with \(f^2 \).)

Using the normality of \(R(S) \) (Lemma 1.2) choose an \(f \) in \(S \) with

\[x \in X \setminus R(f) \quad \text{and} \quad |X \setminus R(f)| \geq 2. \]

Let \(f(x) = y \) and \(z \in X \setminus R(f) \), \(z \neq x \). If

\[g = (x, z) f(x, z) \]

then \(g(z) = y \) and \(z \in X \setminus R(g) \). We let

\[h = (y, z), \quad f_1 = g f \quad \text{and} \quad f_2 = h g h^{-1} f. \]

Then for each \(u \neq x \):

\[f_1(u) = g f(u) = g h^{-1} f(u), \quad \text{since} \quad f(u) \neq y \quad \text{for} \quad u \neq x \]

and \(z \notin R(f) \);

\[= h g h^{-1} f(u), \quad \text{since} \quad g h^{-1} f(u) \neq y \]

for \(f(u) \neq y \)

and \(z \notin R(g) \);

\[= f_2(u). \]

However

\[f_1(x) = g f(x) = g(y) \]

while

\[f_2(x) = h g h^{-1} f(x) = h g h^{-1}(y) = h g(x) = h(y) = z \neq g(y), \]

since \(z \in X \setminus R(g) \). Hence \(f_1(x) \neq f_2(x) \) and \(\mathcal{D}_{f_1, f_2} = \{ x \} \).

Result 2.9. Given \(f_1 \) and \(f_2 \) in \(S \), \(\mathcal{R}_{f_1, f_2} \) is a maximal function right ideal if and only if \(|\mathcal{D}_{f_1, f_2}| = 1 \).

Proof. Suppose \(\mathcal{R}_{f_1, f_2} \) is a maximal function right ideal, while \(x, y \in \mathcal{D}_{f_1, f_2}, \ x \neq y \).
Then

\[\mathbb{R}_{f_1,f_2} = \bigcap_{z \in \mathbb{R}_{f_1,f_2}} \mathbb{R}_z \quad \text{(Result 2.7)} \]

\[\subseteq \mathbb{R}_x \cap \mathbb{R}_y \]

\[\subseteq \mathbb{R}_x \quad \text{(Lemma 2.3)}. \]

It follows from Result 2.8 that there exist \(g_1 \) and \(g_2 \) with

\[\mathbb{R}_{g_1,g_2} = \mathbb{R}_x, \]

and so

\[\mathbb{R}_{f_1,f_2} \subseteq \mathbb{R}_x = \mathbb{R}_{g_1,g_2}, \]

a contradiction to the maximality of \(\mathbb{R}_{f_1,f_2} \). Hence \(|\mathbb{R}_{f_1,f_2}| = 1 \).

For the converse, suppose \(\mathbb{R}_{f_1,f_2} = \{x\} \), some \(x \in X \), while there exist \(g_1, g_2 \in S \) such that

\[\mathbb{R}_{g_1,g_2} \supseteq \mathbb{R}_{f_1,f_2}. \]

Since

\[\mathbb{R}_{g_1,g_2} = \bigcap_{y \in \mathbb{R}_{g_1,g_2}} \mathbb{R}_y \quad \text{(Result 2.7)} \]

we have

\[\bigcap_{y \in \mathbb{R}_{g_1,g_2}} \mathbb{R}_y = \mathbb{R}_{g_1,g_2} \supseteq \mathbb{R}_{f_1,f_2} = \mathbb{R}_x \quad \text{(Result 2.7 again)}, \]

and so Lemma 2.3 ensures \(\mathbb{R}_{g_1,g_2} = \{x\} \), that is

\[\mathbb{R}_{g_1,g_2} = \mathbb{R}_x = \mathbb{R}_{f_1,f_2}. \]

Corollary 2.10. Given \(f_1 \) and \(f_2 \) in \(S \), \(\mathbb{R}_{f_1,f_2} \) is a maximal function right ideal if and only if \(\mathbb{R}_{f_1,f_2} = \mathbb{R}_x \), some \(x \in X \).

Proof. Follows from Results 2.7 and 2.9.

We show now that each automorphism \(\phi \) of \(S \) permutes point right ideals.

Result 2.11. Given \(x \in X \),

\[\phi(\mathbb{R}_x) = \mathbb{R}_y, \]

for some \(y \in X \).

\[\square \]
AUTOMORPHISMS OF NORMAL TRANSFORMATION SEMIGROUPS 191

Proof. Choose \(f_1 \) and \(f_2 \) in \(S \) such that \(\mathcal{R}_{f_1, f_2} = \mathcal{R}_x \) (Result 2.8), then

\[
\phi(\mathcal{R}_x) = \phi(\mathcal{R}_{f_1, f_2}) = \phi(\{r : f_1 r = f_2 r\})
\]

\[
= \{\phi(r) : \phi(f_1 r) = \phi(f_2 r)\}
\]

\[
= \{\phi(r) : \phi(f_1)\phi(r) = \phi(f_2)\phi(r)\}
\]

\[
= \{r' : \phi(f_1)r' = \phi(f_2)r'\}
\]

\[
= \mathcal{R}_{\phi(f_1), \phi(f_2)}.
\]

Now Corollary 2.10 ensures \(\mathcal{R}_{f_1, f_2} \) is a maximal function right ideal, hence \(\mathcal{R}_{\phi(f_1), \phi(f_2)}(= \phi(\mathcal{R}_{f_1, f_2})) \) is a maximal function right ideal, so there exists \(y \in X \) such that

\[
\mathcal{R}_{\phi(f_1), \phi(f_2)} = \mathcal{R}_y \quad \text{(Corollary 2.10)}
\]

and thus

\[
\phi(\mathcal{R}_x) = \mathcal{R}_{\phi(f_1), \phi(f_2)} = \mathcal{R}_y.
\]

Define a map

\[
\eta: \{\mathcal{R}_x : x \in X\} \to \{\mathcal{R}_x : x \in X\}
\]

via \(\eta(\mathcal{R}_x) = \phi(\mathcal{R}_x) \), each \(\mathcal{R}_x \subseteq S \).

Lemma 2.12. \(\eta \) is a bijection.

Proof. That \(\eta \) is a mapping is the content of Result 2.11. Similarly by considering the automorphism \(\phi^{-1} \) we define a map

\[
\zeta: \{\mathcal{R}_x : x \in X\} \to \{\mathcal{R}_x : x \in X\}
\]

via \(\zeta(\mathcal{R}_x) = \phi^{-1}(\mathcal{R}_x) \), each \(\mathcal{R}_x \subseteq S \).

Certainly, \(\zeta \) is the inverse of \(\eta \) and so \(\eta \) is a bijection.

We now define a map

\[
h: X \to X \quad \text{via} \quad h(x) = y, \quad \text{where} \quad \eta(\mathcal{R}_x) = \mathcal{R}_y, \quad \text{each} \ x \in X.
\]

It is clear, that

\[
h = \theta^{-1}\eta\theta,
\]

and so Lemmas 2.4 and 2.12 ensure \(h \) is a bijection of \(X \). We call \(h \) the bijection associated with \(\phi \).
Lemma 2.13. Given \(f \in S \),
\[
R(\phi(f)) = h(R(f)).
\]

Proof. Observe that to show \(R(\phi(f)) = h(R(f)) \) it is sufficient to show that
\[
X \setminus R(\phi(f)) = h(X \setminus R(f)),
\]
because for the bijection \(h \), \(h(X \setminus R(f)) = X \setminus h(R(f)) \).
Now if \(x \in X \setminus R(f) \), that is \(f \in \mathbb{R}_x \), then \(\phi(f) \in \eta(\mathbb{R}_x) = \mathbb{R}_{h(x)} \), so \(h(x) \in X \setminus R(\phi(f)) \), or
\[
h(X \setminus R(f)) \subseteq X \setminus R(\phi(f)).
\]
To show the reverse inclusion is true, observe that \(h^{-1} = \theta^{-1} \eta^{-1} \theta \) is the bijection associated with \(\phi^{-1} \) and so the first part of the proof implies that given \(g \in S \),
\[
h^{-1}(X \setminus R(g)) \subseteq X \setminus R(\phi^{-1}(g)).
\]
In particular taking \(g = \phi(f) \) we have \(h^{-1}(X \setminus R(\phi(f))) \subseteq X \setminus R(\phi^{-1}(\phi(f))) \), or
\[
h(X \setminus R(f)) \supseteq X \setminus R(\phi(f)),
\]
and the equality follows. \(\square \)

We complete our study of automorphisms of \(\mathcal{G}_\mathcal{X} \)-normal semigroups of 1-1 transformations, that is, semigroups of Type 2, by presenting the following result.

Result 2.14. Let \(S \) be a \(\mathcal{G}_\mathcal{X} \)-normal semigroup of 1-1 transformations \((S \subseteq \mathcal{G}_\mathcal{X})\). Then each automorphism \(\phi \) of \(S \) is inner, that is, for some \(h \in \mathcal{G}_\mathcal{X} \)
\[
\phi(f) = h f h^{-1}, \quad \text{for each } f \in S.
\]

Proof. Consider the bijection \(h \) associated with \(\phi \) as defined prior to Lemma 2.13. Take an arbitrary \(f \in S \), \(x \in X \) and let \(f(x) = y \). Choose \(A \) in \(R(S) \) with \(A \neq X \) and \(x \in A \).
Let \(z \in X \setminus A \) and \(B=(A\setminus \{x\}) \cup \{z\} \in R(S) \) (Lemma 1.2). Choose \(p \) and \(q \) in \(S \) such that \(R(p) = A \) and \(R(q) = B \).
Now \(R(p) \setminus R(q) = A \setminus B = \{x\} \), thus \(R(fp) \setminus R(fq) = \{f(x)\} = \{y\} \). Using Lemma 2.13 we have:
\[
R(\phi(p)) \setminus R(\phi(q)) = \{h(x)\}
\]
and
\[
R(\phi(fp)) \setminus R(\phi(fq)) = \{h(y)\}.
\]
However
\[
R(\phi(fp)) \setminus R(\phi(fq)) = R(\phi(\phi(p)) \setminus R(\phi(f)p(q)) \setminus R(\phi(f))\phi(q)) = \{\phi(f)h(x)\},
\]
so

\[\phi(f)h(x) = h(y) = hf(x), \quad \text{that is} \]
\[\phi(f) = hf h^{-1}. \]

Remark 2.15. The fact that every \(G_X \)-normal semigroup of 1-1 transformations possesses only inner automorphisms was first established by B. M. Schein [8, 9]. We understand that his proof, based on the study of ordered sets of ranges, is quite different from ours.

3. \(G_X \)-normal constant-free semigroups containing a transformation which is not 1-1

Let \(S \) be a \(G_X \)-normal constant-free semigroup containing a transformation which is not 1-1. We prove that all automorphisms of \(S \) are inner. We start by showing that \(R(S) \) contains only sets of cardinality \(|X| \).

Lemma 3.1. If \(S \) is a \(G_X \)-normal constant-free semigroup, then \(|R(f)| = |X| \), each \(f \in S \).

Proof. Suppose there is an \(f \) in \(S \) with \(|R(f)| = \alpha < |X| \), that is \(|\pi(f)| = |R(f)| = \alpha \). We show that there exists an \(A \in \pi(f) \) with \(|A| \geq \alpha \). The result is clear when \(\alpha \) is finite. Hence assume \(\alpha \) is infinite and denote by \(\alpha^+ \) the cardinal successor of \(\alpha \). Then either \(\alpha^+ = |X| \) (and so \(|X| \) is regular [7, 21.14]) or there exists \(\beta < |X| \), \(\beta = \alpha^+ \) (and so \(\beta \) is regular [7, 21.14]). The assumption that each \(A \in \pi(f) \) has a cardinality less than \(\alpha \) implies that \(\cup \pi(f) \geq |X| \) or \(\cup \pi(f) < \beta < |X| \) respectively [7, 21.18], a contradiction. Hence we can choose an \(A \in \pi(f) \) with \(|A| \geq \alpha \) and a \(B \in R(S) \) with \(B \subseteq A \) and \(|B| = \beta \) (Lemma 1.2) together with a \(g \in S \) such that \(R(g) = B \). Then \(|R(fg)| = 1 \), so that \(fg \) is a constant map in \(S \), a contradiction which proves \(|R(f)| = |X| \).

Let \(\mathcal{P}_2 \) be the set of all doubletons in \(X \).

Definition 3.2. Given \(A \in \mathcal{P}_2 \), \(A = \{a_1, a_2\} \), let

\[\mathcal{L}_A = \{ l \in S : l(a_1) = l(a_2) \} \]

Then \(\mathcal{L}_A \) is a left ideal of \(S \) which we call a point left ideal.

Lemma 3.3. For each \(A \in \mathcal{P}_2 \), \(\mathcal{L}_A \neq \emptyset \).

Proof. Choose a map \(f \) in \(S \) which is not 1-1, say \(f(x) = f(y) \) for distinct \(x, y \in X \). If \(h \in G_X \) is such that \(\{h(x), h(y)\} = A \) then \(hf h^{-1} \in \mathcal{L}_A \).
Lemma 3.4. Given \(A, B \in \mathcal{P}_2 \), the following three statements are equivalent:

(i) \(\mathcal{L}_A \subseteq \mathcal{L}_B \);
(ii) \(A = B \);
(iii) \(\mathcal{L}_A = \mathcal{L}_B \).

Proof. Implications (ii) \(\Rightarrow \) (iii) and (iii) \(\Rightarrow \) (i) are trivial. We show (i) \(\Rightarrow \) (ii).

Let \(B = \{b_1, b_2\} \) and suppose \(A \neq B \), say \(b_1 \in B \setminus A \). Choose an \(l \in \mathcal{L}_A \) (Lemma 3.3) and let \(x \in R(l) \setminus (A \cup B) \) (note: \(|X| = |R(l)| > |(A \cup B)| \), Lemma 3.1). If \(y \in X \) is such that \(l(y) = x \), let \(h = (b_1, y) \) and \(f = hlh^{-1} \). We show \(f \in \mathcal{L}_A \setminus \mathcal{L}_B \). That \(f \in \mathcal{L}_A \) follows from the fact that \(h \) moves only points \(b_1 \) and \(y \), which are not in \(A \). To show that \(f \notin \mathcal{L}_B \), observe that \(f(b_1) = hlh^{-1}(b_1) = h(y) = h(x) \), while \(f(b_2) = hlh^{-1}(b_2) = h(b_2) \), because \(b_2 \neq y \) (else \(x = l(y) = l(b_2) = l(B) \), contrary to the choice of \(x \)). Hence \(f(b_2) \neq h(x) \), because \(l(b_2) = l(B) \neq x \). Thus \(f(b_1) \neq f(b_2) \) and \(f \notin \mathcal{L}_B \).

Define a map \(\delta: \mathcal{P}_2 \to \{ \mathcal{L}_A; A \in \mathcal{P}_2 \} \) via \(\delta(A) = \mathcal{L}_A \), each \(A \in \mathcal{P}_2 \).

Lemma 3.5. \(\delta \) is a bijection.

Proof. Clearly \(\delta \) is onto and Lemma 3.4 ensures \(\delta \) is 1-1.

Definition 3.6. Given distinct \(f_1, f_2 \in S \) let

\[
\mathcal{L}_{f_1, f_2} = \{ l \in S; lf_1 = lf_2 \}.
\]

Then \(\mathcal{L}_{f_1, f_2} \) is a left ideal of \(S \) (possibly empty, see Example 3.7 below), which we call a function left ideal.

We will show (Result 3.10) that for each \(S \)-normal constant-free semigroup \(S \) containing a transformation which is not 1-1 there exist \(f_1, f_2 \in S \) with \(\mathcal{L}_{f_1, f_2} \neq \Phi \). In general, the question of whether \(f_1, f_2 \in S \) generate a non-empty \(\mathcal{L}_{f_1, f_2} \) is the question of whether the equation \(lf_1 = lf_2 \) has a solution \(l \) in \(S \). The example below illustrates that \(\mathcal{L}_{f_1, f_2} \) may be empty.

Example 3.7. Let \(S \) be the dual Baer-Levi semigroup of the type \((|X|, |X|)[1]\), that is the semigroup of all onto mappings \(f \) such that \(|f^{-1}(x)| = |X| \) for each \(x \in X \). Certainly \(S \) is \(S_X \)-normal. Assume \(X = \mathbb{N} \), so that \(|X| = \aleph_0 \). Fix an arbitrary \(f_1 \in S \) and let

\[
\mathcal{A} = \pi(f_1) = \{ A_1, A_2, A_3, \ldots \}.
\]

Partition each \(A_i \in \mathcal{A} \) such that \(A_i = A_i^+ \cup A_i^- \), \(|A_i^+| = |A_i^-| = \aleph_0 \). Let \(\mathcal{B} \) be the partition of \(X \)
given by

\[B = \{ A_1', A_1'' \cup A_2', A_2'' \cup A_3', \ldots \}. \]

Since \(B \) is a partition of \(X \) into \(\aleph_0 \) sets, each of cardinality \(\aleph_0 \), \(B \in \pi(S) \), and so there exists \(f_2 \in S \) with \(\pi(f_2) = B \). Suppose \(l \in L_{f_1, f_2} \) that is \(lf_1 = lf_2 \) and let \(l(A_1) = x \). Then because of the choice of \(B \) we have the following chain of equalities:

\[x = lf_1(A_1) = lf_1(A_1'') = lf_2(A_1'') = lf_2(A_2') = lf_1(A_2') = \ldots \]

thus

\[x = lf_1(A_1) = lf_1(A_2) = \ldots, \]

that is \(R(lf_1) = \{ x \} \) and \(lf_1 \) is a constant in \(S \), contradicting the construction of \(S \), so that \(L_{f_1, f_2} = \emptyset \).

Recall that \(D_{f_1, f_2} \) and \(D_{f_1, f_2} \) (Notation 2.6) were defined for an arbitrary \(\mathcal{G}_X \)-normal semigroup \(S \) \((f_1, f_2 \in S)\). The following remark is an immediate consequence of the definition of \(D_{f_1, f_2} \).

Remark 3.8. Let \(f_1, f_2 \in S \), then \(D_{f_1, f_2} \subseteq \mathcal{D}_2 \).

We proceed with two results deriving relationships between point left ideals and function left ideals.

Result 3.9. Let \(f_1 \) and \(f_2 \) be distinct elements of \(S \), and \(L_{f_1, f_2} \neq \emptyset \). Then

\[L_{f_1, f_2} = \bigcap_{A \in D_{f_1, f_2}} L_A. \]

Proof. Let \(l \in L_{f_1, f_2} \), that is \(lf_1 = lf_2 \) and so for each \(x \in D_{f_1, f_2} \) we have \(lf_1(x) = lf_2(x) \) (recall \(f_1(x) \neq f_2(x) \)) so \(l \in L_{f_1(x), f_2(x)} \) and since this is true for each \(x \in D_{f_1, f_2} \) we conclude

\[l \in \bigcap_{x \in D_{f_1, f_2}} L_{f_1(x), f_2(x)} = \bigcap_{A \in D_{f_1, f_2}} L_A, \quad \text{or} \quad L_{f_1, f_2} \subseteq \bigcap_{A \in D_{f_1, f_2}} L_A. \]

Conversely, let \(l \in \bigcap_{A \in D_{f_1, f_2}} L_A \), then for each \(x \in D_{f_1, f_2} \), \(lf_1(x) = lf_2(x) \). Now for each \(y \notin D_{f_1, f_2} \) we have \(f_1(y) \neq f_2(y) \), so we deduce \(lf_1 = lf_2 \). That is, \(l \in L_{f_1, f_2} \) and \(\bigcap_{A \in D_{f_1, f_2}} L_A \subseteq L_{f_1, f_2} \), which proves the desired equality.
Result 3.10 Given an $A \in \mathcal{P}_2$, there exist f_1 and f_2 in S such that

$$\mathcal{L}_A = \mathcal{L}_{f_1,f_2}.$$

Proof. On account of Result 3.9 it is sufficient to construct f_1 and f_2 such that

$$D_{f_1,f_2} = \{A\}.$$

Choose an f in \mathcal{L}_A (Lemma 3.3) and let $f(A) = z$. Let $A = \{a_1, a_2\}$. Since S is transitive (Result 1.3) there exists g in S such that $g(z) = a_1$. Let $h = (a_1, a_2)$ and

$$f_1 = g f; \quad f_2 = h f_1 h^{-1}.$$

Since h moves only points in A and $f_1 \in \mathcal{L}_A$ (\mathcal{L}_A is a left ideal), we conclude $f_2 = h f_1$.

For each $x \in X \setminus f_1^{-1}(A)$ we have:

$$f_1(x) = h f_1(x) = f_2(x),$$

so $\mathcal{D}_{f_1,f_2} \subseteq f_1^{-1}(A)$. Now if $x \in f_1^{-1}(A)$, that is $f_1(x) = a_i$, $i = 1, 2$, then

$$f_1(x) = a_i \neq h(a_i) = h f_1(x) = f_2(x),$$

hence $\mathcal{D}_{f_1,f_2} \supseteq f_1^{-1}(A)$. We conclude

$$\mathcal{D}_{f_1,f_2} = f_1^{-1}(A).$$

Thus

$$D_{f_1,f_2} = \{(f_1(x), f_2(x)) : x \in \mathcal{D}_{f_1,f_2}\} \quad \text{(Notation 2.6)}$$

$$= \{(f_1(x), f_2(x)) : x \in f_1^{-1}(A)\}$$

$$= \{(a_i, h(a_i)) : i = 1, 2\}$$

$$= \{(a_1, a_2)\}$$

$$= \{A\},$$

as required. \qed

Result 3.11. Given distinct f_1 and f_2 in S, \mathcal{L}_{f_1,f_2} is a maximal function left ideal if and only if $|D_{f_1,f_2}| = 1$.

Proof. Let \mathcal{L}_{f_1,f_2} be a maximal function left ideal and suppose $A, B \in D_{f_1,f_2}, A \neq B$.
AUTOMORPHISMS OF NORMAL TRANSFORMATION SEMIGROUPS 197

Then $A, B \in \mathcal{P}_2$ (Remark 3.8). Hence

$$\mathcal{L}_{f_1, f_2} = \bigcap_{C \in D_{f_1, f_2}} \mathcal{L}_C \quad \text{(Result 3.9)}$$

$$\subseteq \mathcal{L}_A \cap \mathcal{L}_B$$

$$\subseteq \mathcal{L}_A \quad \text{(Lemma 3.4)}$$

$$= \mathcal{L}_{g_1, g_2} \quad \text{(Result 3.10),}$$

for some distinct $g_1, g_2 \in S$, contradicting the maximality of \mathcal{L}_{f_1, f_2}. Hence $|D_{f_1, f_2}| = 1$.

Conversely, suppose $D_{f_1, f_2} = \{A\}$, some $A \in \mathcal{P}_2$, while there exists a function left ideal \mathcal{L}_{g_1, g_2} ($g_1, g_2 \in S$) such that

$$\mathcal{L}_{g_1, g_2} \supseteq \mathcal{L}_{f_1, f_2}.$$

Since $\mathcal{L}_{g_1, g_2} = \bigcap_{B \in D_{g_1, g_2}} \mathcal{L}_B$ (Result 3.9) we have

$$\bigcap_{B \in D_{g_1, g_2}} \mathcal{L}_B = \mathcal{L}_{g_1, g_2} \supseteq \mathcal{L}_{f_1, f_2} = \mathcal{L}_A \quad \text{(Result 3.9 again)},$$

and so Lemma 3.4 ensures $D_{g_1, g_2} = \{A\}$, that is

$$\mathcal{L}_{g_1, g_2} = \mathcal{L}_A = \mathcal{L}_{f_1, f_2}. \quad \square$$

Corollary 3.12. Given f_1 and f_2 is S, \mathcal{L}_{f_1, f_2} is a maximal left function ideal if and only if $\mathcal{L}_{f_1, f_2} = \mathcal{L}_A$, some $A \in \mathcal{P}_2$.

Proof. Follows from Results 3.9 and 3.11. \square

We show now that each automorphism ϕ of S permutes point left ideals.

Result 3.13. Given $A \in \mathcal{P}_2$,

$$\phi(\mathcal{L}_A) = \mathcal{L}_B,$$

for some $B \in \mathcal{P}_2$.

\square
\textbf{Proof.} Choose \(f_1 \) and \(f_2 \) in \(S \) such that \(L_{f_1, f_2} = L_A \) (Result 3.10), then

\[
\phi(L_A) = \phi(L_{f_1, f_2}) = \phi(\{l : lf_1 = lf_2\})\\
= \{\phi(l) : \phi(lf_1) = \phi(lf_2)\}\\
= \{\phi(l) : \phi(l)\phi(f_1) = \phi(l)\phi(f_2)\}\\
= \{l : \phi(f_1) = \phi(f_2)\}\\
= L_{\phi(f_1), \phi(f_2)}.
\]

Now Corollary 3.12 ensures \(L_{f_1, f_2} \) is a maximal function left ideal, hence \(L_{\phi(f_1), \phi(f_2)} \) (\(= \phi(L_{f_1, f_2}) \)) is a maximal function left ideal, so there exists \(B \in \mathcal{P}_2 \) such that

\[
L_{\phi(f_1), \phi(f_2)} = L_B \quad \text{(Corollary 3.12)}.
\]

We conclude

\[
\phi(L_A) = L_{\phi(f_1), \phi(f_2)} = L_B. \quad \square
\]

Define a map \(\mu : \{L_A : A \in \mathcal{P}_2\} \to \{L_A : A \in \mathcal{P}_2\} \)

via \(\mu(L_A) = \phi(L_A) \), each \(L_A \subseteq S \).

\textbf{Lemma 3.14.} \(\mu \) is a bijection.

\textbf{Proof.} That \(\mu \) is a mapping is the content of Result 3.13. Similarly by considering the automorphism \(\phi^{-1} \) we define a map

\[
\xi : \{L_A : A \in \mathcal{P}_2\} \to \{L_A : A \in \mathcal{P}_2\}
\]

via \(\xi(L_A) = \phi^{-1}(L_A) \), each \(L_A \subseteq S \). Certainly, \(\xi \) is the inverse of \(\mu \) and so \(\mu \) is a bijection. \quad \square

We now define a map \(\lambda : \mathcal{P}_2 \to \mathcal{P}_2 \) via \(\lambda(A) = B \), where \(\mu(L_A) = L_B \), each \(A \in \mathcal{P}_2 \).

It is clear that

\[
\lambda = \delta^{-1} \mu \delta,
\]
and so Lemmas 3.5 and 3.14 ensure \(\lambda \) is a bijection of \(S_2 \). We call \(\lambda \) the bijection of \(S_2 \) associated with \(\phi \).

We show that \(\lambda \) is induced by a bijection \(h \) of \(X \), that is
\[
\lambda(A) = h(A),
\]
for each \(A \in S_2 \). Note here that not every bijection of \(S_2 \) is induced, as shown in Example 3.15 below.

Example 3.15. Fix \(A \) and \(C \) in \(S_2 \), \(A \neq C \) and let \(\lambda \) be a bijection of \(S_2 \), which interchanges \(A \) and \(C \) and the identity otherwise. Choose \(B \in S_2 \), \(B = \{x, y\} \) such that \(x \in A \cap C \) and \(y \in X \setminus (A \cup C) \). Note \(A \cap B = \{x\} \) and \(B \cap C = \emptyset \). Suppose \(\lambda \) is induced by \(h \in S_X \), then
\[
h(x) = h(A \cap B) = h(A) \cap h(B) = \lambda(A) \cap \lambda(B) = C \cap B = \emptyset.
\]
Thus \(\lambda \) is not induced. \(\square \)

Observe that in the example above we had \(\lambda \), a bijection of \(S_2 \), such that
\[
|A \cap B| \neq |\lambda(A) \cap \lambda(B)|,
\]
for some \(A, B \) in \(S_2 \). This leads us to a criterion for a bijection \(\lambda \) of \(S_2 \) to be induced.

Result 3.16. Let \(\lambda \) be a bijection of \(S_2 \). Then \(\lambda \) is induced if and only if
\[
|A \cap B| = |\lambda(A) \cap \lambda(B)|,
\]
for every \(A, B \in S_2 \).

Proof. If \(\lambda \) is induced by an \(h \in S_X \), then for every \(A, B \in S_2 \),
\[
|A \cap B| = |h(A \cap B)| = |h(A) \cap h(B)| = |\lambda(A) \cap \lambda(B)|.
\]
For the converse suppose that \(\lambda \) is a bijection of \(S_2 \) such that for every \(A, B \in S_2 \)
\[
|A \cap B| = |\lambda(A) \cap \lambda(B)|.
\]
(\(\ast \))

We show that \(\lambda \) is induced. This is done in the following three steps.

1. Given \(x \in X \) there exists a unique \(y \in X \) such that for every \(A, B \in S_2 \) with \(A \cap B = \{x\} \) we have \(\lambda(A) \cap \lambda(B) = \{y\} \).

Take a pair \(A, B \) in \(S_2 \) with \(A \cap B = \{x\} \), then by the assumption (\(\ast \)) \(\lambda(A) \cap \lambda(B) = \{y\} \), for some \(y \in X \).

Take any other pair \(C, D \) in \(S_2 \) with \(|C \cap D| = 1 \) and let \(\mathcal{F} \subseteq S_2 \) be such that:

(a) for every distinct \(F_1, F_2 \in \mathcal{F} \), \(|F_1 \cap F_2| = 1 \);

(b) for any \(F \in \mathcal{F} \), \(|A \cap F| = |B \cap F| = |C \cap F| = |D \cap F| = 1 \).

We show:
\[
C \cap D = \{x\} \text{ iff there exists an } \mathcal{F} \text{ (as described above) with } |\mathcal{F}| = |X|.
\]

Let \(A \cup B \cup C \cup D = E \), then \(|E| \leq 8 \) and \(|X \setminus E| = |X| \).

Assume firstly that \(C \cap D = \{x\} \) and let \(\mathcal{F} = \{\{x, y\}: y \in X \setminus E\} \). Then \(\mathcal{F} \) satisfies (a) and (b) and \(|\mathcal{F}| = |X \setminus E| = |X| \).
For the converse assume \(C \cap D = \{ z \} \), \(z \neq x \) and \(\mathcal{F} \subseteq \mathcal{P}_2 \) satisfies (\(\alpha \)) and (\(\beta \)). For each \(F \in \mathcal{F} \) we have \(|E \cap F| > 1\). (If not, then

\[
|E \cap F| = |(A \cup B \cup C \cup D) \cap F|
\]

\[
= |(A \cap F) \cup (B \cap F) \cup (C \cap F) \cup (D \cap F)| \leq 1.
\]

Using condition (\(\beta \)) we conclude:

\[
A \cap F = B \cap F = C \cap F = D \cap F = A \cap B = \{ x \},
\]

or \(C \cap D = \{ x \} \), a contradiction).

Define a map \(\nu: \mathcal{F} \to \mathcal{P}(E) \), where \(\mathcal{P}(E) \) is the power set of \(E \), via \(\nu(F) = E \cap F \), each \(F \in \mathcal{F} \). We show \(\nu \) is 1–1. Suppose \(F_1, F_2 \in \mathcal{F} \) with \(\nu(F_1) = \nu(F_2) \). Then

\[
1 < |E \cap F_1| = |E \cap F_1 \cap F_2| \leq |F_1 \cap F_2|,
\]

so that \(|F_1 \cap F_2| > 1\), thus \(F_1 = F_2 \) (condition (\(\alpha \))). However \(\mathcal{P}(E) \) is finite, so \(|\mathcal{F}| \leq |\mathcal{P}(E)| < \aleph_0 \), or \(|\mathcal{F}| < |X|\). We conclude \(C \cap D = \{ x \} \).

Observe now that the definition of the set \(\mathcal{F} \) depends on the sets \(A, B, C \) and \(D \). We denote this dependence by \(\mathcal{F} = \mathcal{F}(A, B, C, D) \). Hence \(C \cap D = \{ x \} \) iff \(\exists \mathcal{F}(A, B, C, D) \) with \(|\mathcal{F}(A, B, C, D)| = |X| \) iff \(\exists \mathcal{F}(\lambda(A), \lambda(B), \lambda(C), \lambda(D)) \) with \(|\mathcal{F}(\lambda(A), \lambda(B), \lambda(C), \lambda(D))| = |X| \) (assumption (\(\ast \)))

\[
\text{iff } \lambda(C) \cap \lambda(D) = \{ y \}.
\]

Now define a map

\[
h: X \to X \text{ via } \{h(x)\} = \lambda(A) \cap \lambda(B), \text{ where } \{x\} = A \cap B, \text{ for } A, B \in \mathcal{P}_2 \text{ and each } x \in X.
\]

2. \(h \) is a bijection of \(X \).

That \(h \) is well-defined is the content of step 1. Observe that the bijection \(\lambda^{-1} \) of \(\mathcal{P}_2 \) is associated with the automorphism \(\phi^{-1} \). By considering \(\phi^{-1} \) and \(\lambda^{-1} \) instead of \(\phi \) and \(\lambda \) we define a map \(k: X \to X \) via \(\{k(x)\} = \lambda^{-1}(A) \cap \lambda^{-1}(B) \), where \(\{x\} = A \cap B \), for \(A, B \in \mathcal{P}_2 \) and each \(x \in X \). Then for each \(x \in X \)

\[
\{kh(x)\} = k(\lambda(A) \cap \lambda(B)), \text{ where } A \cap B = \{x\}
\]

\[
= \lambda^{-1}(A) \cap \lambda^{-1}(B)
\]

\[
= A \cap B
\]

\[
= \{x\}.
\]

Similarly we can show \(hk(x) = x \), for each \(x \in X \). Thus \(k \) is the inverse of \(h \), and so \(h \) is a bijection of \(X \).
3. \(\lambda \) is induced by \(h \).

To show \(\lambda \) is induced by \(h \) we must show \(\lambda(A) = h(A) \) for each \(A \in \mathcal{P}_2 \). From the definition of \(h \) we at once have \(h(A) \subseteq \lambda(A) \). Take \(y \in \lambda(A) \) and let \(B \in \mathcal{P}_2 \) be such that \(\lambda(A) \cap \lambda(B) = \{ y \} \). Then \(A \cap B = \{ x \} \), some \(x \in A \), so \(h(x) = y \) and \(h(A) \supseteq \lambda(A) \). The equality follows. \(\square \)

Remark 3.17. In view of Result 3.16 our aim now is to show that for every \(A, B \in \mathcal{P}_2 \)
\[
|A \cap B| = |\lambda(A) \cap \lambda(B)|
\]

(*) where \(\lambda \) is the bijection of \(\mathcal{P}_2 \) associated with \(\phi \) as defined prior to Example 3.15.
Observe that (*) is equivalent to the statement
\[
|A \cap B| = 1 \quad \text{if and only if} \quad |\lambda(A) \cap \lambda(B)| = 1,
\]

(**\)** for each \(A, B \in \mathcal{P}_2 \).

Indeed (*) certainly implies (****). We show the reverse implication.

Assume (****) holds. If \(|A \cap B| = 2 \), that is \(A = B \), then \(\lambda(A) = \lambda(B) \), and so \(|\lambda(A) \cap \lambda(B)| = 2 \).
If \(|A \cap B| = 1 \), then by our assumption \(|\lambda(A) \cap \lambda(B)| = 1 \). The case \(|A \cap B| = 0 \) follows by elimination. \(\square \)

The next lemma illustrates the fact that the existence of a transformation \(f \) in \(S \) which is not 1–1 provides an extensive variety of elements in \(\pi(S) \).

Lemma 3.18. Given \(B_1, B_2 \subseteq X \) with \(B_1 \cap B_2 = \emptyset \) and \(|B_1| = |B_2| = 3 \) there exists an \(\mathcal{A} \in \pi(S) \) with \(B_1 \subseteq A_1 \in \mathcal{A} \), \(B_2 \subseteq A_2 \in \mathcal{A} \).

Proof. Suppose that there exists a transformation \(f \) in \(S \) such that:
\[C_1, C_2 \in \pi(f) \quad \text{and} \quad |C_1|, |C_2| \geq 3. \]
Choose a bijection \(p \) of \(X \) with
\[B_1 \subseteq p(C_1) \quad \text{and} \quad B_2 \subseteq p(C_2). \]
Certainly \(pf p^{-1} \in S \). Let
\[\mathcal{A} = \pi(pf p^{-1})(= p(\pi(f))), A_1 = p(C_1) \quad \text{and} \quad A_2 = p(C_2), \]
then \(A_1, A_2 \in \mathcal{A} \in \pi(S) \) and \(B_1 \subseteq A_1, B_2 \subseteq A_2 \).

To construct such an \(f \) as used above we first show that there exists a \(g \) in \(S \) such that
\[g(x_1) = g(x_2) = g(x_3) = x_1, \quad \text{for some distinct} \ x_1, x_2, x_3 \in X. \]
Choose a t in S not 1–1 and let $x, x_1, x_2 \in X$ be such that $$t(x_1) = t(x_2) = x.$$ We assume $x = x_1$ (for if $x \neq x_1$ choose $s \in S$ such that $s(x) = x_1$ (Result 1.3) and replace t by st). Let $x_4 \in R(t) \setminus \{t^{-1}(x_1)\}$ (note: $R(t) \setminus \{t^{-1}(x_1)\} \neq \emptyset$, else t^2 is a constant in S) and let $x_3 \in X$ such that $t(x_3) = x_4$. Then $$g = (x_2, x_4)t(x_2, x_4)t$$ is such that $g(x_1) = g(x_2) = g(x_3) = x_1$.

To accomplish the construction of the above f choose distinct z_1, z_2, z_3 in $R(g) \setminus \{g^{-1}(x_1)\}$ together with $y_1, y_2, y_3 \in X$ such that $g(y_i) = z_i$, $i = 1, 2, 3$. Let $$k = (x_1, z_1)(x_2, z_2)(x_3, z_3) \in \mathcal{G}_X \quad \text{and} \quad f = kgk^{-1}g.$$ Let $kg(z_1) = z_4$. Then $$f(x_1) = f(x_2) = f(x_3) = z_4$$ and $$f(y_1) = f(y_2) = f(y_3) = z_1.$$ Now $z_1 \neq z_4$ (else $kg(z_1) = z_4$ implies $g(z_1) = z_1$ or $z_1 \in g^{-1}(x_1)$, contrary to the choice of z_1). Let $C_1 = f^{-1}(z_1), C_2 = f^{-1}(z_4)$. Then $|C_1|, |C_2| \geq 3$ and $C_1, C_2 \in \pi(f)$ as required. \hfill \square

Remark 3.19. It easily follows from Lemma 3.18 that

$$\mathcal{L}_A \cap \mathcal{L}_B \neq \emptyset,$$

for every $A, B \in \mathcal{P}_2$. \hfill \square

Lemma 3.20. Let $A, B \in \mathcal{P}_2$, $A \neq B$. Then $|A \cap B| = 1$ iff there is a C in \mathcal{P}_2, $C \neq A$ or B, such that $\mathcal{L}_A \cap \mathcal{L}_B \subseteq \mathcal{L}_C$.

Proof. Assume $|A \cap B| = 1$ and let $C = (A \cup B) \setminus (A \cap B)$. For each l in $\mathcal{L}_A \cap \mathcal{L}_B$ (Remark 3.19):

$$l(A) = l(A \cap B) = l(B) = l(A \cup B) = l(C),$$

so that $l \in \mathcal{L}_C$ and $\mathcal{L}_A \cap \mathcal{L}_B \subseteq \mathcal{L}_C$.

For the converse suppose $A \cap B = \emptyset$ and $C \in \mathcal{P}_2$ is distinct from A and B. Let $C = \{c_1, c_2\}$. Since $|A \cap C| \leq 1$ and $|B \cap C| \leq 1$ assume without loss of generality that $c_1 \in X \setminus B$ and $c_2 \in X \setminus A$. Choose

$$\mathcal{A} \in \pi(S) \quad \text{with} \quad A \cup \{c_1\} \subseteq A_1 \in \mathcal{A}, \ B \cup \{c_2\} \subseteq A_2 \in \mathcal{A} \quad \text{and} \quad A_1 \neq A_2 \quad \text{(Lemma 3.18)}.$$
If \(l \in S \) has \(\pi(l) = \mathcal{A} \), then \(l \in (\mathcal{L}_A \cap \mathcal{L}_B) \setminus \mathcal{L}_C \).

This confirms that \(|A \cap B| = 1 \).

Lemma 3.21. Let \(A, B \) and \(C \) be distinct elements of \(\mathcal{P}_2 \). Then

\[
\mathcal{L}_A \cap \mathcal{L}_B \subseteq \mathcal{L}_C \iff \mathcal{L}_{\lambda(A)} \cap \mathcal{L}_{\lambda(B)} \subseteq \mathcal{L}_{\lambda(C)}.
\]

Proof. Observe that \(\mathcal{L}_A \cap \mathcal{L}_B \neq \emptyset \) (Remark 3.19) and

\[
\mathcal{L}_A \cap \mathcal{L}_B \subseteq \mathcal{L}_C \iff \phi(\mathcal{L}_A \cap \mathcal{L}_B) \subseteq \phi(\mathcal{L}_C).
\]

Now

\[
\phi(\mathcal{L}_A \cap \mathcal{L}_B) = \phi(\mathcal{L}_A) \cap \phi(\mathcal{L}_B) = \mathcal{L}_{\lambda(A)} \cap \mathcal{L}_{\lambda(B)},
\]

by the definition of \(\lambda \). Also \(\phi(\mathcal{L}_C) = \mathcal{L}_{\lambda(C)} \), so that

\[
\phi(\mathcal{L}_A \cap \mathcal{L}_B) \subseteq \phi(\mathcal{L}_C) \iff \mathcal{L}_{\lambda(A)} \cap \mathcal{L}_{\lambda(B)} \subseteq \mathcal{L}_{\lambda(C)},
\]

and the desired equivalence is established. \(\square \)

Result 3.22. Given \(A \) and \(B \) in \(\mathcal{P}_2 \),

\[
|A \cap B| = 1 \text{ if and only if } |\lambda(A) \cap \lambda(B)| = 1.
\]

Proof. We have:

\[
|A \cap B| = 1 \iff \exists C \neq A \text{ or } B \text{ such that } \mathcal{L}_A \cap \mathcal{L}_B \subseteq \mathcal{L}_C \quad \text{(Lemma 3.20)}
\]

\[
\iff \exists \lambda(C) \neq \lambda(A) \text{ or } \lambda(B) \text{ such that } \mathcal{L}_{\lambda(A)} \cap \mathcal{L}_{\lambda(B)} \subseteq \mathcal{L}_{\lambda(C)}
\]

\[
(\lambda \text{ is a bijection and Lemma 3.21})
\]

\[
\iff |\lambda(A) \cap \lambda(B)| = 1 \quad \text{(Lemma 3.20 again)}.
\]

From Results 3.16, 3.22 and Remark 3.17 we readily deduce

Result 3.23. \(\lambda \) is induced by a bijection of \(X \). \(\square \)

Now we are ready to show that a constant-free \(G_X \)-normal semigroup containing a transformation which is not 1–1 (that is a semigroup of Type 3), possesses only inner automorphisms.

Result 3.24. Let \(S \) be a constant-free \(G_X \)-normal semigroup containing a transformation which is not 1–1. Then each automorphism \(\phi \) of \(S \) is inner, that is for some \(h \in G_X \)

\[
\phi(f) = hfh^{-1}, \text{ for each } f \in S.
\]

Proof. Let \(h \) be the bijection which induces \(\lambda \) (Result 3.23). In what follows we use
the fact that for any distinct \(x_1, x_2 \in X \)

\[\phi(L_{(x_1, x_2)}) = L_{h(x_1), h(x_2)}. \]

Take an arbitrary \(f \in S, x \in X \) and let \(y \in X \) with \(f(x) \neq f(y) \) (that is \(f \notin L_{(x, y)} \)). Then

\[\phi(L_{(f(x), f(y))}) = L_{(hf(x), hf(y))}. \]

Let \(\phi(g) \in \phi(L_{(f(x), f(y))}) \). Then \(g \in L_{(f(x), f(y))} \) or \(g f(x) = g f(y) \). It follows that \(\phi(g f) \in L_{(h(x), h(y))} \), hence

\[\phi(g) \phi(f) h(x) = \phi(g) \phi(f) h(y). \]

Note that \(f \notin L_{(x, y)} \) implies \(\phi(f) \notin \phi(L_{(x, y)}) \) or \(\phi(f) \notin L_{(h(x), h(y))} \), that is

\[\phi(f) h(x) \neq \phi(f) h(y). \]

Thus \(\phi(g) \in L_{(\phi(f) h(x), \phi(f) h(y))} \) and we conclude

\[\phi(L_{(f(x), f(y))}) \subseteq L_{(\phi(f) h(x), \phi(f) h(y))}. \]

This in turn implies

\[L_{(hf(x), hf(y))} \subseteq L_{(\phi(f) h(x), \phi(f) h(y))}. \]

Hence \(\{ hf(x), hf(y) \} = \{ \phi(f) h(x), \phi(f) h(y) \} \) (Lemma 3.4).

Since the choice of \(y \) is independent of \(x \) (providing \(y \neq x \)) we conclude

\[\phi(f) h(x) = hf(x), \quad \text{for each} \quad x \in X, \]

so that

\[\phi(f) = hf h^{-1}, \quad \text{as required.} \]

\[\square \]

Conclusion

We return to

Theorem 1.1. Every automorphism of a \(G_X \)-normal semigroup \(S \) is inner.

Proof. If \(S \) is a semigroup of Type 1, that is, contains a constant transformation, then we appeal to Sullivan [12, Theorem 1].

If \(S \) is a semigroup of Type 2, that is, a semigroup of 1–1 transformations, the result is given in 2.14 and 1.4.

If \(S \) is a semigroup of Type 3, that is, a semigroup containing a transformation which is not 1–1, then the result is given in 3.24.

This completes the proof of Theorem 1.1. \[\square \]
Remark. If X is a finite set and S is a semigroup of transformations of X which is not contained in \mathcal{G}_X, then S is \mathcal{G}_X-normal if and only if all automorphisms of S are inner [13].

However, this is not the case for an infinite set X. While, as we showed, every \mathcal{G}_X-normal semigroup S has only inner automorphisms, there are examples [5] of semigroups which are neither subsemigroups of \mathcal{G}_X, nor \mathcal{G}_X-normal, yet have only inner automorphisms.

REFERENCES

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CANTERBURY
CHRISTCHURCH
NEW ZEALAND