Title

Biodiversity explains maximum variation in productivity under experimental warming, nitrogen addition, and grazing in mountain grasslands

Document Type

Article

Publication Date

10-1-2018

Publication Title

Ecology and Evolution

Volume

8

First Page

10094

Last Page

10112

Keywords

experimental warming, functional diversity, grazing, multimodel inference, nitrogen addition, phylogenetic diversity

Abstract

© 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Anthropogenic global warming, nitrogen addition, and overgrazing alter plant communities and threaten plant biodiversity, potentially impacting community productivity, especially in sensitive mountain grassland ecosystems. However, it still remains unknown whether the relationship between plant biodiversity and community productivity varies across different anthropogenic influences, and especially how changes in multiple biodiversity facets drive these impacts on productivity. Here, we measured different facets of biodiversity including functional and phylogenetic richness and evenness in mountain grasslands along an environmental gradient of elevation in Yulong Mountain, Yunnan, China. We combined biodiversity metrics in a series of linear mixed-effect models to determine the most parsimonious predictors for productivity, which was estimated by aboveground biomass in community. We examined how biodiversity–productivity relationships were affected by experimental warming, nitrogen addition, and livestock-grazing. Species richness, phylogenetic diversity, and single functional traits (leaf nitrogen content, mg/g) represented the most parsimonious combination in these scenarios, supporting a consensus that single-biodiversity metrics alone cannot fully explain ecosystem function. The biodiversity–productivity relationships were positive and strong, but the effects of treatment on biodiversity–productivity relationship were negligible. Our findings indicate that the strong biodiversity–productivity relationships are consistent in various anthropogenic drivers of environmental change.

This document is currently not available here.

Share

COinS