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ABSTRACT: Benthic crustaceans such as the blue crab Callinectes sapidus use various sensory ap-
pendages to navigate chemical plumes. We characterized the role of different sensory structures in
blue crabs during olfactory search by deafferenting (i.e. removing or rendering inactive) particular
sensor populations and by quantifying odor-plume structure and flow dynamics. Our results indicate
that blue crabs use both cephalic and thoracic appendages for olfactory-mediated orientation.
Cephalic chemosensor deafferentation decreased search success, reduced walking speed and in-
creased the duration of stationary periods. All these deficiencies are manifestations of the inability of
crabs to sustain upstream progress. Crabs subjected to deafferentation of thoracic sensilla failed to cor-
rectly track the narrowing plume and showed an increased frequency of large course-corrections.
Whereas cephalic sensors clearly function in motivating upstream movement during the search pro-
cess, thoracic receptors aid in source localization. The differing functional roles of these 2 sets of ap-
pendages may be associated with different signal characteristics impinging on their chemosensor pop-
ulations. Intermittent but intense signals received by the cephalic appendages may enable the crabs to
identify attractive odors and sustain searching. Chemical signals impinging on legs are more homo-
geneous and may allow the crabs to acquire better information on the spatial patterns of chemical sig-
nal structure that are important for navigation. The simultaneous use of chemical signals at differing
heights in the plume suggest that the 3D structure of these plumes is important for foraging success,
and that different populations of neural receptors may be tuned to operate optimally in particular sig-
nal environments.
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INTRODUCTION

Chemical cues serve as a fundamental source of sen-
sory information linking a variety of interacting organ-
isms (Dusenbery 1992, Pawlik 1992, Dodson et al.
1994, Zimmer 2000). These chemical signals are often
received only after having been transported by moving
fluid (i.e. air or water), a process that disperses chemi-
cals across a range of spatial and temporal scales.
Thus, the physics of fluid motion influences the infor-
mation available to organisms and alters chemically
mediated ecological interactions such as tracking prey
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or mates (Weissburg & Zimmer-Faust 1993, Weissburg
et al. 1998, Moore et al. 2000).

Although the effects of physics (e.g. turbulence
intensity) on plume navigation by benthic organisms
have been characterized, the potential role of the ver-
tical structure of chemical plume dynamics remains
unknown. Many macrobenthic marine organisms (e.g.
lobsters and crabs) live at the interface between the
solid bed and a moving fluid. Bed friction generates
velocity gradients (i.e. a boundary layer: Nowell &
Jumars 1984) which, in turn, creates vertical variation
in the spatial and temporal distribution of chemicals
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(Moore & Atema 1991, Moore et al. 1994) that could
have implications for sensory systems and search
strategies.

Macrobenthic organisms such as decapods, gastro-
pods, echinoderms, and fishes grow large enough to
have olfactory sensilla on structures that encounter
this range of hydrodynamic microhabitats. The
chemosensory sensilla in these various zones may
exhibit different sensory functions and neurophysio-
logical properties when exposed to different spatial
and temporal patterns of chemical signals. Receptor
cells of insects (Kaissling et al. 1987) have much
higher temporal resolution than those of marine crus-
taceans (Gomez & Atema 1996); this is possibly
related to a greater variation in chemical signal inten-
sity in terrestrial environments.

Decapod crustaceans have chemoreceptors distrib-
uted on their mouthparts (Shelton & Lavarack 1970),
dactyls and propodus of claws and walking legs (Hatt
1984, Schmidt & Gnatzy 1989, Weissburg & Derby
1995), antennae (Tazaki & Shigenaga 1974, Voigt &
Atema 1992, Gomez & Atema 1996), and antennules
(Hazlett 1971, Reeder & Ache 1980, Devine & Atema
1982). These groups of sensilla have specialized che-
mosensory functions (Derby & Atema 1982). American
lobsters Homarus americanus flick their antennules
(biramus-joined appendages located above the mouth-
parts) to sample and identify chemical cues (Derby &
Atema 1988) and to orient in chemical plumes (Hazlett
1971, Reeder & Ache 1980, Devine & Atema 1982).
Chemoreceptors on mouthparts (mandibles and maxil-
lae) and walking legs (periopods) function primarily
during food manipulation (Derby & Atema 1988).

The role of chemosensory appendages during plume
orientation has been best studied in various lobster
species (Hazlett 1971, Reeder & Ache 1980, Derby &
Atema 1982, Devine & Atema 1982). These animals
have a characteristic body form that includes long
bilaterally paired sensory appendages of considerable
mobility (the first and second antennae). Thus, the
chemosensory search strategies they employ may be, if
not unique among crustaceans, contingent on the
particular form of their sensory equipment.

The blue crab Callinectes sapidus provides an inter-
esting comparative model system in which to examine
the structure and function of appendages involved in
chemically mediated search. Compared to lobsters,
these decapods have small (2 cm long), antennae that
are relatively less mobile, but a spatially extended and
roughly circular array of thoracic walking legs that are
also sensory appendages. The ecological importance
of blue crabs as predators on benthic infauna and epi-
fauna (Blundon & Atema 1982, Eggleston et al. 1984)
and the general mechanisms they use during prey
tracking are well established (Weissburg & Zimmer-

Faust 1993, 1994). Whether blue crabs use sensory
input from their different sensory appendages while
tracking chemical plumes is unknown. Using blue
crabs in a laboratory flume, we conducted experiments
designed to examine the role played by the cephalic
(i.e. antennules and antennae) and thoracic (i.e. walk-
ing legs/claws) appendages in chemical search. We
addressed this issue by analyzing the behavior of indi-
viduals with experimentally induced chemosensory
deficiencies and by characterizing the structure of the
chemical signal at heights above the bed likely to be
sampled by different sensory populations.

MATERIALS AND METHODS

Crabs. Using baited traps, male and female blue
crabs Callinectes sapidus were collected from habitats
adjacent to Dickson Bay, Panacea, Florida (Latitude
30°00'N, Longitude 84°22'W). The crabs were
shipped to Atlanta, Georgia, and kept in communal
tanks filled with artificial seawater (33 ppt, 20°C: ASW,
Instant Ocean®), and tested within 20 d of collection.
The crabs were maintained on a 12 h light:12 h dark
cycle, and fed freshly thawed shrimp and squid ad libi-
tum. We withheld food from the crabs approximately
12 h prior to testing to ensure that they were not sati-
ated and to standardize the hunger level.

Flow environment. We characterized blue crab
search behavior and hydrodynamics in an indoor recir-
culating flume (12.5 m long x 0.75 m wide) in which we
could control fluid flow and boundary-layer conditions.
The flume was lined with sand to provide a natural
substrate on which the blue crabs could move (grain
size = 0.894 + 0.124 mm, mean diameter + SD, N = 37),
and was kept free of obvious ripples or other surface
features. The experimental section was >7 m down-
stream from the flume entrance to provide ample dis-
tance for the boundary layer to become established
(Weissburg & Zimmer-Faust 1993, Zimmer-Faust &
Butman 2000). Water velocity was controlled with a
variable-speed pump and discharge was monitored
using an inline meter. Average flow velocity was main-
tained at 4.9 + 0.08 cm s™! (mean * SD) with a water
depth of 23.0 £ 0.348 cm (mean + SD) controlled by a
vertical tailgate. Light levels were lowered during tri-
als to minimize visual cues during navigation and
because field observations indicated peaks in foraging
activity in near-dark periods of early morning and
evening (Clarke et al. 1999).

Hydrodynamic measurements. We quantified the
flow velocity in the center of the flume (38.5 cm from
the flume walls) and 0.75 m downstream from the odor
source at 23 distances above the flume bed (between 1
and 18 cm). Mean velocity values and their root mean
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square (RMS, or SD) were calculated from unfiltered
velocity records obtained with a laser Doppler
velocimeter (60 s record length). RMS values measure
the variability of the velocity at a given point to esti-
mate turbulence intensity. We characterized bound-
ary-layer shear wvelocity (u*) and roughness by
Reynolds number (Re*) following Weissburg &
Zimmer-Faust (1993). Boundary-layer shear velocities
were estimated with using the well defined law-of-the-
wall equation:

Ue) = (u* k) In(zz") (1)

where U(z) is the mean velocity at a given height (z)
above the bed; kis von Karman's constant (0.41). We cal-
culated the hydraulic roughness length (zy) as the inter-
cept of the least-squares linear regression through mean
velocity values in the log-layer (4.5 to 7.2 cm above the
bed) plotted against the logarithm of height z. We de-
termined the flow characteristics in the near-bed region
(viscous sublayer layer) of the flow by calculating the
roughness Reynolds number (Re*).

Re* = u* Dv'! (2)

Roughness height, D, was set as the mean grain size
of the sand (0.894 + 0.124 mm; mean + SD, N = 37), as
measured from digital images using NIH Image soft-
ware, and v is the kinematic viscosity.

Odor plume structure. We used electrochemistry
microelectrodes (IVEC-10) to quantify the properties of
spatial and temporal odorant distributions. This tech-
nique has been used successfully in field and labora-
tory settings to measure chemical stimulus distribu-
tions (Moore & Atema 1991, Moore et al. 1991a,b,
Zimmer-Faust et al. 1995, Keller et al. 2001, Weissburg
et al. 2003).

Chemical signal intensity was measured along the
plume centerline after releasing the chemical marker
0.5 M dopamine at 4 ml min~! through a cylindrical air-
diffuser (4 cm long by 1 cm diameter) mounted inside a
shrimp exoskeleton. This delivery was hypokinetic to the
bulk flow so that the turbulence generated by the shrimp
carapace was the primary arbiter of the resulting odor
plume. A peristaltic pump introduced dopamine at a
constant and controlled rate. Dopamine concentration
fluctuations were measured for more than 5 min, and
recordings included a 1 min period prior to odor release
to determine background-noise levels.

We measured the dopamine concentrations at 1, 2,
and 5 cm above the bed, the approximate height of the
cephalic sense organs (antennae and antennules) and
the chemosensors on the tips of the walking legs. We
quantified chemical dynamics at 25, 75, and 125 cm
directly downstream from the source to detect changes
in odor signal properties along the plume length.
Because we were interested in the information avail-

able to individual crustacean sensory neurons, we
acquired data at 2 Hz, which is similar to the sampling
abilities reported for Homarus americanus olfactory
neurons (Gomez & Atema 1996).

Exceedence values represent the probability that a
single measurement will meet or exceed a known con-
centration, and these were calculated from the concen-
tration records. At any given concentration x, the
exceedance probability is (1-£;), where f, is the propor-
tion of data records displaying a concentration less
than x. Exceedance probabilities were calculated in
5 nM increments ranging from 0 to 120 nM. Finally, we
calculated intermittence, or the proportion of the time
in which no tracer was detected, at 1, 2 and 5 cm above
the substrate.

Behavioral experiments. We conducted a series of
experiments that selectively deafferented (i.e. re-
moved or rendered inactive) the chemosensilla on
appendages, and then challenged crabs with the task
of locating a piece of fresh shrimp carrion. Selective
deafferentation of chemosensilla by exposure to dis-
tilled water has been successfully used on blue crabs
(Gleeson et al. 1997) and lobsters (Derby & Atema
1982). Preliminary trials suggested that distilled water
was only marginally effective in blocking the olfactory
function, so we added a concentrated stimulus to pro-
mote exposure of neuronal cells to this harsh osmotic
stress via the opening of ion channels in the sensory
neuron. A slurry was made using 14 g I"! of macerated
shrimp in distilled water (DI-odor treatment), which
was then used to bathe particular appendages. All blue
crabs (including controls) were secured with elastic
bands to a plastic apparatus that positioned their walk-
ing legs and chelae under the body. We exposed the
cephalic sensory appendages (antennules/antennae)
and claws and walking legs to each solution for 30 min.
Crab gills were moistened with sponges dipped in
ASW (33 ppt) during this time. Blue crabs were ran-
domly assigned to a variety of deafferentation and
sham (control) treatments. Treatments of the antenna/
antennules included (1) antennal sham: each structure
was placed in a 1 ml syringe filled with ASW; (2) anten-
nal odorant control: structures were placed in a 1 ml
syringe filled with ASW-odor solution; (3) antennal
deafferentation: structures were placed in a 1 ml
syringe filled with the DI-odor solution; (4) a second
antennal deafferentation: aesthetascs were manually
removed from antennules. Walking leg/claw treat-
ments were (1) walking leg sham: legs were bathed in
ASW; (2) walking leg odor control: legs were exposed
to ASW-odor solution; (3) walking leg deafferentation:
legs were bathed in DI-odor solution.

We used the ASW-only treatments to control for the
effects of handling and the ASW-odor treatments
(shrimp slurry prepared in ASW) to determine whether
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the presence of odor per se was responsible for the
behavioral effects subsequently observed. We re-
moved the chemosensory aesthetascs on the antennu-
lar filaments using methods described by Gleeson
(1982) to provide independent evidence that the
effects were the result of sensory deafferentation. We
elected not to deafferent the antennae in this manner
since the distribution and modality of sensors on this
appendage remains unknown.

Blue crabs were tested for their ability to locate an
upstream odor-source 17 min after treatment. Initial
experiments indicated that 1 piece of freshly thawed
headless shrimp (4.35 + 0.329 g; mean + SE) was the
smallest amount that unaltered crabs could reliably
locate (success rate >90 %), and so this was used as a
stimulus source. Blue crabs were moved carefully to
the flume and placed in a flow-through Plexiglas box
(27.2 cm long, 19.5 cm wide, 16.5 cm high) with a plas-
tic-grate (1 cm? grid) front door and rear panel. The
crabs acclimated in the box for 15 min to prior to intro-
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Fig. 1. Callinectes sapidus. Representative crab path and cal-
culation of kinematic parameters used in analysis of crab lo-
comotory performance. (A) Visualized area of flume showing
position of left and right light-emitting diodes (LEDs) on the
back of a crab at each time point, taken at 1 Hz; line drawn
between the LEDs and bisected by line parallel to the flow di-
rection gives the angle 0; body orientation angle is defined as
90-6, ranging from 0° (crab facing directly upstream), to 90°
(long axis of crab parallel to flow direction). (B) Three succes-
sive positions of a crab from time t=-1 to ¢ = 1, showing vari-
ous velocity components; turn-angle o is the angle represent-
ing change in the crab's trajectory; turn-angles ranged from
0 to +£180°, where positive angles indicate leftward and nega-
tive angles rightward turns

duction of the shrimp, which was subsequently placed
on the sand 1.5 m directly upstream of the Plexiglas
box. The front door was raised 2 min later. Trials lasted
for a maximum of 15 min and were terminated if a crab
moved either upstream of the source or downstream of
the Plexiglas box. Preliminary tests indicated that blue
crabs that moved upstream beyond the source or
downstream of the box never found the source.

Crab behavior was recorded on videotape using a
low-light-sensitive charge-coupled device camera
mounted approximately 2 m above the working section
of the flume; 2 red-light-emitting diodes (LED) pow-
ered by a watch battery and sealed in silicone were
attached with elastic bands to the carapace of each
blue crab before behavioral experiments. A search was
deemed successful when a crab found the shrimp and
attempted to consume it. We assayed the motivational
state of crabs that failed to find the source by placing
them in a cylindrical holding chamber (28 cm dia-
meter) containing 5 1 of ASW and offering them a
single shrimp after a 15 min acclimation period. Blue
crabs that failed to respond to this food within 5 min
were designated as unresponsive and were omitted
from the analysis.

The x,y-coordinates of the centroid of each LED
were determined using Motion Analysis™ software
(60 Hz) smoothed with a moving average algorithm
(window size = 3) and extracted to produce a 4 Hz
time-series. The tracks of successful searches were
used to calculate a variety of kinematic parameters of
foraging crabs (Fig. 1).

Neurophysiology. Extracellular physiology was
used to confirm that the DI-odor treatment reduced
activity of chemosensory neurons in the legs. We
focused on the legs because physiological experiments
are the easiest way in which to independently examine
if deafferentation treatments were responsible for
observed behavioral changes. Alternate deafferenta-
tion methods (e.g. scraping, coating with cyanoacry-
late) may affect mechanosensors and fail to remove
chemosensory pit sensilla known or suspected to be
present on crustacean walking appendages (Schmidt
& Gnatzy 1989, Weissburg et al. 1996).

Isolated appendages were placed into a glass and
Teflon olfactometer so that the sensor-bearing distal tip
was exposed to a seawater carrier while the exposed
nerves lay in a saline-filled compartment. A saline-
filled glass microelectrode was attached to nerves by
suction, and the resulting activity was amplified using
conventional AC recording techniques and digitally
stored on a personal computer. The limb was perfused
by delivering oxygenated saline (4 to 5 ml min~!) into
the main artery via a glass cannula. Identified chemo-
sensory neurons were initially challenged with 4 to
5 presentations each of 0.5 ml of ASW or stimulus mix-
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ture injected into the seawater, at 1 min interstimulus
intervals. The stimulus consisted of a 1:10 mixture of
ground Tetramarin fish flakes dissolved in ASW and
filtered to remove large particles. The seawater carrier
was then switched to the DI-odor solution. Neuronal
activity in response to both ASW and the stimulus mix-
ture was measured after cumulative exposure periods
of 1, 3, 5, 10, 15, 30, 45 and 60 min. The carrier was
then switched back to ASW and neuronal activity
assayed at 15 and 60 min. The response was digitally
stored on a personal computer using commercial soft-
ware (Experimenters’ Workbench, DataWave) and
analyzed off-line to determine the response intensity
(# of spikes) for a 4.5 s period following stimulation.
Further details of the recording and analysis protocols
can be found in Weissburg & Derby (1995).

Statistical analyses. The G-test of independence
(Sokal & Rohlf 1995) was used to determine if deaf-
ferentation treatment affected source-finding success.
A repeated-measures analysis of variance was used to
examine effects of distance (<50, 50 to 100, >100 cm
from the source) and deafferentation treatment on the
following 6 kinematic parameters: total velocity, along-
stream velocity (i.e. velocity component towards or
away from the source), cross-stream velocity, cross-
stream displacement (i.e. cross-stream distance from
the source axis), time spent stationary and the net-to-
gross displacement ratio (NGDR). The NGDR, which
measures path linearity, was arcsine-square-root
transformed before analysis (Sokal & Rohlf 1995). An
NGDR of 1 indicates a perfectly linear path. Significant
deafferentation effects revealed by repeated-measures
ANOVA were further explored by single degree of
freedom post-hoc comparisons between deafferenta-
tion treatments and their respective controls.

The effects of treatment and distance on turn angles
were compared by a Kolmogorov-Smirnov (KS) test,
which determined the significance probability of the
maximum difference between the 2 frequency distrib-
utions. We binned all turn-angle observations accord-
ing to the treatment and distance (<50, 50 to 100,
>100 cm from the source) for this analysis.

RESULTS
Hydrodynamic measurements

The hydrodynamic measurements confirmed that
blue crabs were foraging in a reproducible, realistic
and well-defined flow environment (Fig. 2). Our mea-
surements showed a distinctive log-linear relationship
characteristic of a developed boundary layer (Fig. 2A),
where shear acting on the bed imposes the well-
defined law-of-the-wall relationship between height
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Fig. 2. Flow characteristics during the blue crab Callinectes
sapidus behavioral trials. (A) Boundary layer profile showing
velocity (U) versus height above substrate (z). (B) Plot of law-
of-the-wall relationship of velocity versus height above sub-
strate; in this plot, velocity and height are non-dimensional-
ized by shear velocity (u*). In the log-layer region of boundary
layer, the relationship between U u*~! and log (u* zv™!) is lin-
ear. (C) RMS of velocity fluctuations (u') versus height above
substrate, showing increased turbulence intensity within
maximal velocity gradient close to the bed

above bed and flow velocity (Fig. 2B). Values of
Reynolds number (Re* = 2.65) indicated that the flow
was hydraulically smooth near the bed, with a shear
velocity, u*, of 3.1 mm s ! for these flow conditions.
Blue crabs search for prey in similar estuarine hydro-
dynamic environments (Finelli et al. 1999). The high-
velocity gradients near the bed generate considerable
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Table 1. Chemical signals in plumes showing intermittence

and mean (SEM)and median (SEM) periods (in seconds)

when dopamine was below detection at 3 distances down-

stream of the source and 3 heights above the bed. N: number

of intervals in which dopamine concentration was below de-

tection; threshold for detection was set at 3 SDs above the
mean baseline value

Distance Height Intermittence N Mean  Median
(cm) (cm) (s) (s)
25 1 0.59 71 1.96 (0.49) 2
25 2 0.89 34 5.03 (0.94) 4
25 5 1.0 - - -
75 1 0.07 20 1.05(0.45) 1
75 2 0.61 68  2.09 (0.51) 2
75 5 0.98 4 36.2(16.2) 885
125 1 0.11 22 0.88(0.12) 1
125 2 0.16 40  0.72 (0.06) 1.5
125 5 0.71 56 2.74 (0.52) 3

mixing at the height of the blue crab walking legs (ca.
1 to 2 cm), whereas velocity gradients and turbulence
are less pronounced at the antennal height (ca. 5 cm;
Fig. 2C). These results are consistent with those of
other studies of turbulence in open channel flows
(Nezu & Rodi 1986).

Structure of odor-plume signal

We characterized the spatial and temporal variability
of chemicals in the fluid microhabitats where searching
blue crabs maintain their sensory appendages, because
the distribution of chemical signals constrains the infor-
mation available to searching animals. Intermittence, the
mean period without tracer, and total duration of tracer
absence were all reduced in areas far from the source or
close to the bed (Table 1). High intermittence close to the
source reflects changes in the plume centerline (e.g.
Moore et al. 1994, Webster & Weissburg 2001), which
cease downstream as turbulence homogenizes and
spreads the plume. Intermittence varies in the vertical
dimension as a result of enhanced shear close to the bed.
Sensors located 5 cm above the bed (i.e. near the
cephalic appendages) experienced highly intermittent
stimulation and long periods of signal absence (2.2sto 5
min), whereas intermittence was very low close to the
bed (i.e. near chemosensors on legs). Tracer was not de-
tected 25 cm from the source at the 5 cm height because
the plume had not expanded sufficiently for turbulent
eddies to transport signals much above the bed.

The exceedence probabilities for tracer concentra-
tion recordings indicated clear height-dependent dif-
ferences (Fig. 3). Chemical tracer concentrations
recorded 5 cm above the bed rarely exceeded 10 pM,

but were frequently above this level close to the sub-
strate. Concentrations near the bed were greater than
those measured higher in the water column at all dis-
tances downstream from the source. Exceedance prob-
ability-distributions shifted in a complex way depend-
ing on the measurement height as the plume evolved
downstream. Signals close to the bed became some-
what homogenized, so that exceedence values de-
creased at the highest concentrations and increased at
intermediate levels. At 5 cm above the bed, tracer was
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Fig. 3. Exceedance plots of chemical signals emanating from
shrimp mimics. Chemical tracer concentrations and corre-
sponding exceedance values were calculated at 1, 2 and 5 cm
above the bed, which corresponded roughly to locations sam-
pled by chemosensors on thoracic (1 to 2 cm) and cephalic
(5 cm) appendages. (A) 25 cm downstream from source;
(B) 75 cm downstream from source; (C) 125 cm directly
downstream from source
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transported vertically as the plume developed down-
stream so that the probability of detecting the tracer
increased over much of the concentration range.

Behavioral experiments

We evaluated the impact of the various deafferenta-
tion treatments and controls first by examining pat-
terns of search success (Table 2). Blue crabs with
cephalic appendages exposed to ASW or ASW-odor
solutions successfully located the source in nearly all
the experiments and success rates were not signifi-
cantly different from each other (G = 0.01, p > 0.05).
The similar search success of untreated crabs (not
shown) and their controls, as well as the uniformity
among control groups suggests that these treatments
have little effect on search performance. Search effec-
tiveness was reduced by deafferentation of the anten-
nae and antennules using either the DI-odor solution
or by aesthetasc removal, and these 2 treatments were
not significantly different from each other (G = 1.45,
p > 0.05). We compared the success rates of pooled
antennal/antennae deafferentation-treated crabs (DA)
to pooled control (SA) crabs and found that deaf-
ferentation significantly reduced foraging success by
roughly 50 % (G = 12.19, p < 0.001). The effects of ASW
and ASW-odor treatments on legs mimicked that for
the cephalic appendages; crabs successfully located
the source regardless of treatment (G = 0.01, p > 0.05)
and behaved remarkably similar to untreated crabs
and to each other. However, deafferentation of walk-
ing legs (DL) had no effect on search success (G = 0.3,
p > 0.05) when tested against the pooled SL group.

An initial repeated-measures ANOVA was used to
examine the effect of all 7 treatments and controls on
the path kinematics of successful searchers. Fig. 4
shows representative paths of crab in these treatment
groups that illustrate the general facets of the naviga-
tional paths as well as changes induced by the deaf-
ferentation treatment. ANOVA consistently failed to
demonstrate differences between the ASW and ASW-
odor treatments. Of the 18 individual degree of free-
dom post-hoc tests (3 distances x 6 kinematic vari-
ables), cephalic appendages exposed to ASW versus
ASW-odor differed in only 2 cases, whereas these
2 treatments in legs only differed in 1 case. Similarly,
analysis of this full model showed that the effects of
aesthetasc removal and DI-odor solution were similar,
with a difference detected in only 1 post-hoc compari-
son. Accordingly, based on the analysis of success rate
and path kinematics, both the ASW and ASW-odor
treatments were combined into a single control group
for antennae/antennules (control or sham antennal/
antennule = SA) and legs (control or sham leg = SL) for

all further analysis. Likewise, we combined the aes-
thetasc removal and DI-odor treatments of cephalic
appendages (deafferented antennal/antennule = DA).

Deafferentation treatment strongly altered crab
walking speeds (F; 49= 12.98, p < 0.005) and the rela-
tionship between speed and distance from the source
(Fig. 5). Blue crabs in both antennal- and leg-deaffer-
ented groups (DA and DL) decreased their upstream
walking speed by 15 to 50 % relative to their respective
controls (SA and SL), depending on treatment and dis-
tance from the source. The greatest decreases were for
crabs with deafferented antennae, for which walking
speeds averaged approximately 50 % of the SA group.
There was a general tendency for crabs to move quickly
within 100 cm from the source, but then to decrease their
walking speed within 50 cm (F, ¢3= 18.57, p < 0.005). A
significant distance x treatment interaction (Fg 9= 2.27,
p < 0.05) indicated that deafferentation treatments dis-
rupted this normal pattern of locomotion. Post-hoc com-
parisons indicated that these effects were more impor-
tant for crabs treated with antennal deafferentation
(Fig. 5); crabs in the DA group moved significantly more
slowly at all distances from the source and showed little
evidence of a final reduction in walking speed, whereas
the DL group showed reduced walking speed only be-
tween 50 and 100 cm from the source (Fj 4 > 6.18,
p < 0.016 for all comparisons) and still displayed a ve-
locity peak at intermediate distances from the source.
Treatment effects on movement speeds in both cross-
and along-stream directions were similar to patterns of
total walking speed, and also were significant
(F5,40= 5.41, p < 0.005; F; 49 = 13.59, p < 0.005, respec-

Table 2. Callinectes sapidus. Number of successful and un-
successful searches as a function of deafferentation treatment
for the 7 separate treatments used in this study. As a result of
the statistical analysis of success rate and kinematic variables,
the 2 antennal defferentation treatments were pooled (DA),
and the ASW and ASW-odor control groups for antennae/an-
tennules and legs were pooled (SA and SL, respectively)

Treatment No. successful No. unsuccessful
Antennal deafferentation
DI-odor 7 9
Scraping 5 6
Total 12 15
Antennal sham
ASW 8 0
ASW-odor 7 1
Total 15 1
Leg deafferentation 8 1
Leg sham
ASW 8 2
ASW-odor 9 2
Total 17 4
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Fig. 4. Callinectes sapidus. Typical paths displayed by successful blue crab foragers subjected to deafferentation and control

treatments. Tracks in each graph represent along- and cross-stream location of left and right LEDs as crab moves toward the

source, which is located at 0.0 cm. Data points are plotted at 0.25 s intervals as described in ‘Materials and methods’, and flow

proceeds from left to right. Treatments were as follows: (A) aesthetasc removal; (B) antennae/antennule deafferented by DI-odor

solution; (C) ASW-odor treatment of antennae/antennule; (D) legs deafferented by DI-odor solution; (E) ASW-odor treatment of

legs; (F) ASW treatment of the legs. DI-odor and ASW-odor treatments = exposure to slurry of macerated shrimp in distilled water
or in artificial seawater, respectively, as described in ‘Materials and methods')

tively). Post-hoc test comparisons showed that along-
stream speeds were significantly reduced in DA group at
all distances and in DL groups between 50 and 100 cm
from the source, whereas the cross-stream speeds were
significantly lower at all distances from the source in the
DA group only (F;, 49 >4.21, p < 0.05 for all comparisons).

Deafferentation had major effects on the propensity of
crabs to sustain upstream locomotion (Fig. 6; F; 49=5.44,

p < 0.005), with a significant effect of distance (F, g5 =
3.63, p <0.05). In general, crabs stopped more frequently
when farther from the source. Individuals in the DA
group spent more time stationary than those in the SA
group (F; 49 = 6.98, p < 0.011 for all distances). Deaf-
ferentation of the walking legs had no effect on the time
blue crabs spent stationary, regardless of their distance
from the source (F 49 < 0.14, p > 0.71 for all distances).
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Fig. 5. Callinectes sapidus. Walking speed of successful crabs
in deafferentation treatments and controls showing mean
(+SEM) walking speed for crabs in each treatment group as a
function of distance downstream from the source. Sample
sizes were 15, 12, 17 and 8 for SA, DA, SL and DL treatments,
respectively. Asterisks indicate treatments (DA, DL) are sig-
nificantly different from their respective controls (SA, SL) at
the given distance. (SA, DA = control and antennal/antennae
deafferentiated crabs, respectively; SL, DL = control and
walking-leg deafferentiated crabs, respectively)

Blue crabs make lateral movements relative to the
axis of bulk flow during the search process (Fig. 7).
The crabs generally displayed a higher NGDR as they
moved upstream, indicating that they moved more
directly towards the source as they approached it. The
NGDR pooled across treatments equaled 0.73 + 0.04,
0.76 = 0.05, 0.82 = 0.03 for downstream distances of
>100 cm, 100 to 50 cm and <50 cm, respectively
(Fig. 7A; F, 95 = 4.10, p < 0.05). Analysis also revealed
a significant decrease in the lateral distance of the
crabs to the plume centerline as they moved upstream
(Fig. 7B; F, o5 = 7.04, p < 0.005). These patterns reflect
the fact that under our flow conditions plumes narrow
and become more coherent near their origin (see ‘Dis-
cussion’). Thus, the crabs could move more directly
towards their goal and orient more easily relative to
the plume as they approached the source. Both path
linearity and lateral displacement also changed due to
deafferentation (F3 49 = 3.95, p < 0.025; Fj 49 = 2.76,
p < 0.05, respectively). Although crabs in the DL
group had lower NGDR at all distances relative to
their respective controls, none of the individual com-
parisons were significant. In contrast, post-hoc tests
showed that crabs in the DL group were farther from
the centerline at all downstream distances than those
in the SL group (Fy 49> 4.44, p < 0.05 for all compar-
isons) whereas crabs in the DA group behaved simi-
larly to their respective controls (F; 49 < 2.52, p > 0.05
for all comparisons).

Time stationary
o]
o

Quantification of the turn-angles made by search-
ing blue crabs revealed other changes in locomotory
behavior that were predominantly associated with
deafferentation of thoracic appendages. All crabs suc-
cessfully locating the source made mostly small-angle
turns. Angles less than 10°, and from 10 to 20°
accounted for roughly 40 and 30% of the observed
turn-angles, respectively. Beyond 20°, the frequency
of observations decreased in successive 10° bins and
was generally less than 10%, although turn angles
above 90° sometimes approached this value. No con-
sistent changes were observed in the turning behav-
ior of crabs after deafferentation of the antennae and
antennules either within or across distances (Fig. 8A).
Differences in the distribution of the DA group were
significant only far from the source (>100 cm), reflect-
ing a larger than expected frequency of 30 to 40°
angles and a corresponding decrease in the incidence
of angles between 20 and 30°. Treatment of the tho-
racic appendages had consistent effects on the turn-
ing behavior of crabs as they approached within
100 cm of the source (Fig. 8B). Here, blue crabs in the
DL group showed a far lower proportion of turn-
angles less than 40° and a concomitant increase in
angles greater than 40° compared to crabs in the con-
trol group. Particularly striking was the relatively
high incidence of turns greater than 90°. Far from the
source, crabs in the DL group made small angular
changes more frequently than those in the control
treatment.

140
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Fig. 6. Callinectes sapidus. Duration of motionlessness during
tracking of crabs in deafferentation treatments and controls
showing mean (+SEM) total period that crabs remained
motionless during tracking to the source. Because ANOVA
revealed a consistent effect of distance, motionless periods
were pooled across all 3 distances for each treatment group.
Sample sizes were 15, 12, 17 and 8 for SA, DA, SL and DL
treatments, respectively
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released into fluid environments (Dodson et al. 1994,
Nevitt 2000, Vickers 2000, Zimmer-Faust & Butman
2000). A clear understanding of the evolution and
function of chemosensory systems is contingent on a
thorough grasp of the signal dynamics created by the
external environment and the ways in which animals
extract information from these environmentally modi-
fied signals (Dusenbery 1992). We addressed these
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Fig. 7. Callinectes sapidus. Path characteristics of crabs locat-
ing odor source in deafferentation treatments and controls.
(A) Average (+SEM) path NGDR displayed by crabs in each
treatment group as a function of distance downstream from
the source. (B) Mean (+SEM) centerline displacement in
paths of crabs in each treatment group as a function of dis-
tance downstream from source. Sample sizes were 15, 12, 17
and 8 for SA, DA, SL and DL treatments, respectively. Aster-
isks indicate treatments (DA, DL) significantly different from
their respective controls (SA, SL) at the given distance.

Neurophysiological response to deafferentation
treatment

Exposure of legs to the DI-odor solution rapidly re-
duced the response of leg chemosensory neurons (Fig.
9). Response intensity declined by approximately 40 %
within the first 5 to 10 min of exposure and reached
nearly undetectable levels after approximately 30 min.
Although we continued to record spontaneous activity of
mechanosensory neurons in response to flow,
chemosensory responses were absent after 45 min of ex-
posure, and did not reappear during the recovery period.

DISCUSSION

Many biological processes of ecological and evolu-
tionary significance are mediated through chemicals
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Fig. 8. Callinectes sapidus. Effect of deafferentation on turn-
angles showing difference in turn frequency between deaf-
ferentation and sham treatments at each of 3 different down-
stream distances pooled across all paths in a given treatment.
In this analysis, only the turn magnitude was considered, so
that leftward and rightward were treated equally. Turns
greater than 90° were lumped for statistical purposes. A posi-
tive value indicates that the frequency of turns in a specific
bin is greater in the deafferented group (DA, DL) than in their
respective controls (SA, SL). (A) Difference in turn angles dis-
played by antenna/antennule deafferented and sham groups;
Kolmogorov-Smirnov (KS) test statistic was significant for dis-
tances of >100 cm downstream (KS = 0.082, p << 0.01); sample
sizes consisted of 579, 710, 1215 and 660, 892, 3098 for crabs
in SA and DA groups at distances of <50, 50 to 100 and
>100 cm downstream, respectively. (B) Difference in turn-an-
gles displayed by leg deafferented and sham groups; KS test
was significant for all distances (KS > 0.12, p << 0.01); sample
sizes consisted of 548, 530, 658 and 431, 573, 587 for animals
in SL and DL groups at distances of <50, 50 to 100 and
>100 cm downstream, respectively
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Fig. 9. Callinectes sapidus. Effect of DI-odor solution on
chemosensory neurons in legs, showing mean (+SEM) re-
sponse relative to baseline activity for 6 chemosensory neu-
rons exposed to DI-odor solution. All responses were cor-
rected for spontaneous activity and response to seawater

issues for aquatic chemoreception by probing the sen-
sory function of different appendages in blue crabs
during navigation using selective deafferentation of
particular sensor populations. Removing either cephal-
ic or thoracic chemosensory function alters chemosen-
sory navigation in specific ways, and the tracking effi-
ciency and/or success is reduced unless both sets of
appendages are intact. This suggests that blue crabs in
turbulent flows use sensilla on both sets of appendages
during olfactory search and that they use different sen-
sory appendages for distinct purposes during odor-
guided orientation. The particular role of each append-
age is associated with, and possibly caused by, the
different chemical stimulus environments experienced
by each sensory appendage.

Eificacy of deafferentation treatments

Taken together, the results of our various treatments
and controls strongly suggest that the shrimp metabo-
lite solution prepared in distilled water (DI-odor treat-
ment) removed or reduced the ability of peripheral
chemosensors on the cephalic and thoracic appen-
dages to sense chemical stimuli. Given that euryhaline
blue crabs are fairly resistant to osmotic shock, the DI-
odor mixture was intended to increase cell permeabil-
ity by forcing it into an active state. Artificial seawater-
odor (ASW-odor) treatments resulted in locomotory
behavior that was similar to that displayed by crabs
exposed to ASW only, indicating that the presence of
odor in the mixture produced no unintended effects,
such as modifying of overall activity levels. The results
of the physiological assay indicate that this treatment

does indeed result in the eventual cessation and con-
tinued absence of odor-evoked neural activity (in legs)
over the time-course of the behavioral experiments.
Antennule deafferentation by immersion in distilled
water reduced the length of outer dendritic segments
and the impulse frequency of receptor neurons in blue
crab aesthetascs (Gleeson et al. 1997). In this study we
manually removed aesthetasc chemosensory struc-
tures from the antennules to generate an independent
method for verifying that locomotory deficiencies were
the result of elimination of sensory input. Individuals
deafferented in this way responded similarly to crabs
with cephalic appendages exposed to the DI-odor
mixture. This suggests that the antennules are the
cephalic appendages largely responsible for naviga-
tion to attractant sources. However, since our experi-
ments were intended to clarify the function of sensors
exposed to different chemical stimulus environments,
further investigation of the independent role of the
cephalic chemosensor-bearing appendages is required
to evaluate this hypothesis. Similarly, the specific con-
tribution of the sensors on the claws and legs requires
further study.

Role of sensory appendages in blue crab
chemically mediated search

Selective deafferentation of sensory appendages
had perceptible effects on odor-guided navigation and
implicated both cephalic (antennae and antennules)
and thoracic (claws and legs) appendages in chemo-
sensory search behavior. In our experiments, crabs
with either deafferented cephalic or thoracic sensory
appendages showed substantial reductions in a variety
of olfactory search-performance measures such as suc-
cess, upstream walking speed, time spent moving,
path linearity, and the frequency of angular corrections
(Table 2, Figs. 4 to 8).

Our results (Figs. 5 & 6) suggest that stimulation of
the cephalic appendages is necessary for crabs to iden-
tify attractive stimulus sources and sustain up-current
progress to the source; deafferented individuals with a
chemosensory function remaining in their walking
legs (DA) moved haltingly, but rather directly, up-
stream (Figs. 4A,B & 7). The hypothesized role of the
antennules in initiating and maintaining upstream
search is consistent with the well-established physio-
logical function of antennae and antennules in marine
crustaceans (Homarus americanus: Derby 1982; Pan-
ulirus argus: Lavarack 1964; Callinectes sapidus: Pear-
son & Olla 1977). Among the large numbers of mor-
phologically identified chemosensilla located on the
dactyls, periopods, and antennae, only the aesthetascs
of the antennules have been identified as unimodal
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olfactory receptors (Derby & Atema 1988). Neurons in
individual sensory hairs (aesthetascs) located on the
lateral flagellum of the antennule are often tuned to
specific chemicals, with a weak or no response to other
stimuli (Derby & Atema 1988). These cells process and
extract information from complex mixtures of chemi-
cals and provide information on the quality (identity) of
specific odorant blends (Ache & Derby 1985, Derby &
Atema 1988). If the aesthetascs of C. sapidus have a
similar function, then treatments that eliminate blue
crab olfactory recognition of the chemical stimulus
would be expected to reduce search success and
increase time spent not searching during orientation
assays.

Antennule and antenna-deafferentation experi-
ments provided only weak evidence that these
appendages also play a role in orientation to the
plume. Removal of antennule and antennal input
had no effects on NGDR or centerline displacement
(Figs. 4A,B, & 7) and significantly altered turning
behavior only far from the source (Fig. 8A). The lack of
a consistent response argues that these crabs may be
trying to confirm stimulus identity by gathering infor-
mation from the aesthetasc sensilla. They may change
their position simply in an attempt to expose these sen-
sors to the plume, as opposed to compensating for a
lack of input necessary for proper orientation.

Deafferentation of the thoracic appendages also
affected search behavior. Blue crabs in the DL group
showed only small changes in up-current progress,
and instead manifested a variety of deficiencies in their
ability to orient themselves to the plume. Crabs with
deafferented thoracic appendages showed signifi-
cantly more large-angle course-corrections and failed
to track the narrowing plume during upstream move-
ment (e.g. Figs. 4D, 7B & 8B). These observations sug-
gest that the extended array of thoracic appendages
provides important information about the location of
the crab with respect to the plume.

The importance of thoracic appendages during navi-
gation is supported by a variety of other evidence. Pre-
vious observations of foraging blue crabs suggested
that odor signals become entrained in the viscous sub-
layer and present an easily discernable spatial pattern
in chemical signal intensity to sensors on the legs
(Weissburg & Zimmer-Faust 1993). Subsequent analy-
sis of the chemical signal structure in turbulent,
aquatic plumes confirmed that sensory appendages
spanning a large width relative to that of the odor
plume promotes the ability of animals to determine
when it is losing contact with the plume (Webster &
Weissburg 2001, Webster et al. 2001). Behavioral stud-
ies indicate that animals adjust their position relative to
the plume by comparisons of chemical signal intensity
between broadly spaced chemical sensors (Weissburg

& Zimmer-Faust 1994, Zimmer-Faust et al. 1995,
Weissburg et al. 2002). For plumes created under simi-
lar flow conditions to that used herein, the integral
length scale, which roughly defines the span of the
odor plume, grows from the size of the source to
roughly 3 times that width 1.5 m downstream (Webster
et al. 2001). Blue crab antennae and antennules are
rather short (2 to 4 cm), and closely spaced (<5 cm
apart). Thus, these appendages can perform spatial
comparisons where plumes narrow near the source,
whereas farther downstream the legs (15 to 25 cm
apart) are much more suited for spatial sampling. The
high signal intermittence and temporal variability at
the typical height of the cephalic sensory appendages
the blue crab (e.g. Table 1) also makes these appen-
dages less useful for spatial comparisons. Indeed, prior
evidence of the importance of antennule stimulation
for chemosensory navigation has come from animals
such as lobsters, which possess large (>5 cm long) and
highly mobile cephalic appendages (McLeese 1973,
Devine & Atema 1982, Mead & Koehl 2000) that can
sample widely in space and in different regions of the
boundary layer.

The movement changes of crabs in the DL groups
varied with downstream distance in a manner consis-
tent with the local structure of the plume signal. The
plume is relatively narrow close to the source and the
intermittence is high. Thus, we would expect that
crabs lacking leg chemosensors would have difficulty
in resolving the location of the chemical signals and so
display large course-corrections in an attempt to deter-
mine their position relative to the plume. Intermittence
decreases away from the source as mixing process
widen and homogenize the plume (e.g. Moore et al.
1994, Finelli et al. 1999, Webster & Weissburg 2001;
present Fig. 3), so that adjustments necessary to main-
tain plume contact are small. An animal starting in the
center of the plume would be less likely to experience
asymmetric stimulation, and in these conditions would
progress rather directly upstream.

Our working hypothesis is that chemosensors on the
thoracic appendages allow blue crabs to maintain con-
tact with the plume, but dramatic behavioral deficien-
cies in response to leg deafferentation occurred only
close to the source due to the signal structure in our
trials. Alternately, walking leg chemosensors may
enhance search efficiency or help the crabs to maintain
contact with the plume but their primary role may be in
near-source food-finding and manipulation, as sug-
gested by other studies on other invertebrates (Derby
1982, Derby & Atema 1982, Moore & Atema 1991).
Behavioral trials in more complicated plume dynamics
could resolve if signal structure, rather than distance
per se, mediates the importance of leg chemosensory
input during guidance. For instance, the importance of
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an extended array with a large spatial span will be
magnified if there is plume meander that creates sig-
nificant intermittence even far from the source. In this
environment, the removal of chemosensory input from
walking legs would be expected to have important
consequences far downstream if this is the primary
sensory system used to mediate cross-stream location
during tracking.

Local chemical signal structure and sensory function

Blue crab navigation in turbulent plumes is thought
to comprise 2 components—upstream surges in re-
sponse to odor (odor-gated rheotaxis) combined with
spatial sampling (tropotaxis) to maintain contact with
the plume (Weissburg & Zimmer-Faust 1993, Zimmer-
Faust et al. 1995, Weissburg et al. 2002). These 2 com-
ponents are sufficient to explain the behavior dis-
played by blue crabs navigating in turbulent plumes
similar to those generated in this study (Weissburg &
Dusenberry 2002). Our results suggest that informa-
tion extracted from the water column using cephalic
sensors primarily mediates the rheotactic component
of the response and maintains upcurrent search. With-
out this information, blue crabs fail to find the source
and stop even when located downstream from the
source along the plume's center axis. Information from
thoracic appendages appears to mediate the ability of
crabs to orient relative to the plume. Removal of input
from chemosensors on the thoracic appendages seems
to interfere with spatial sampling; crabs fail to
decrease their distance from the plume centerline as
the plume narrows and perform an abnormally high
frequency of large course-corrections.

For blue crabs tracking odor in benthic boundary
layers, one potential explanation for the differing roles
of these sensor populations is that the behaviors medi-
ated by particular appendages reflects adaptation to
the local signal environment. The transport and mixing
processes that determine the chemical signal structure
vary vertically within the boundary layer, which in
turn affects the resultant flavor of the chemical signal.
The proposed role of the cephalic and thoracic
appendages, which are largely located in different
regions of the boundary layer, is consistent with the
differences in chemical signal structure impinging on
their respective sensor ensembles.

Blue crab antennae and antennules are several cen-
timeters above the substrate, in the log-layer region of
the boundary layer. A number of studies have shown
that chemical signals in this region display high levels
of signal intermittence, with strong peak signals alter-
nating with nearly odorless conditions (e.g. Moore &
Atema 1991, Finelli et al. 1999, Webster & Weissburg

2001). Although the filamentous nature of the plume
tends to be preserved farther above the bed, odor
plumes become more homogenous closer to the bed,
where strong velocity gradients effectively mix chemi-
cal signals (e.g. Moore & Atema 1991, Finelli et al.
1999, Webster & Weissburg 2001). Weissburg et al.
(2003) measured the odor-signal structure very close to
different blue crab sensory appendages: signals were
dramatically affected by the local flow conditions as
determined by the height above the bed, and are min-
imally altered by the crab’s ventilatory current. Similar
to the results shown here, the dactyl and propodus of
the legs (and to a lesser extent, the claws) were
exposed to more constant signals than the cephalic
appendages.

The odor-signal structure at the height of the cephalic
appendages is well suited to the proposed role of these
appendages in mediating search. Aesthetasc sensilla
receive periodic exposure to intense bursts of chemical
cues, and foraging blue crabs appear to orient their
body to maintain the coherence of these signal bursts
arriving at their cephalic appendages (Weissburg et al.
2003). Periodic exposure may not present a large bur-
den if the task of these appendages is to mediate recog-
nition necessary to sustain upstream search as opposed
to resolving the complex patterns of spatial and tempo-
ral variation in plume structure requisite for naviga-
tional decisions. In some cases, such as when odor
sources are raised off the bottom, signals arriving at
cephalic sensors may be more intense than those in the
vicinity of thoracic chemosensors close to the bottom
(Weissburg et al. 2003).

The association between signal properties and the
apparent function of the thoracic appendages also sug-
gests that adaptation to local signal structures shapes
the role played by these sensory appendages. Sensors
on thoracic appendages are uniquely positioned to
provide information on the location of the blue crab
relative to the plume. The low intermittence of signals
within the plume in the region close to the substrate
would create easily discernible patterns of signal
asymmetry available to sensilla on legs inside versus
outside the plume. The contrast between highly stimu-
lated legs inside the plume relative to a poorly stimu-
lated leg on the outside of the plume provides a code
for the presumptive direction towards the plume cen-
ter, and such asymmetry is known to be important for
mediating navigation in other animals (Basil & Atema
1994). Foraging blue crabs alter their body angle in
order to minimize the intermittence of signals arriving
at sensors located on the tips of their walking legs
(Weissburg et al. 2003).

One issue raised by the observations that multiple sen-
sory appendages mediate tracking is whether the com-
parison of information from these 2 populations of re-
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ceptors also aids in navigation or source-localization.
Measurements of marker chemicals in the fluid micro-
habitats occupied by differing sensory appendages show
clear differences in signal availability that may itself pro-
vide information about source proximity (Moore et al.
1994, Weissburg et al. 2002). Blue crabs could, for in-
stance, be potentially alerted to the presence of the
source when chemical information is present at the legs
but missing from cephalic sensors (e.g. Table 1, Fig. 3).
Blue crabs make postural adjustments during olfactory
navigation by raising and lowering their body; this may
be an attempt to scan the 3D structure of the odor field
(Weissburg et al. 2002). A variety of aquatic animals
switch behavior close to an odor source, engaging in ex-
tensive substrate-probing and other indicators of local
search that suggests they recognize the nearness of their
goal (e.g. Moore & Atema 1991). Future work will be re-
quired to determine if the information embedded in the
3D aspect of plume structure is important in modulating
the transition to local search, or contributes to behaviors
occurring during other phases of olfactory navigation.
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