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Abstract

For a permutation group H on an infinite set X and a transformation / of X, let ( / : / / ) = ({hfh'1 :
h € //)) be a group closure of / . We find necessary and sufficient conditions for distinct normal
subgroups of the symmetric group on X and a one-to-one transformation / of X to generate distinct
group closures of / . Amongst these group closures we characterize those that are left simple, left
cancellative, idempotent-free semigroups, whose congruence lattice forms a chain and whose congruences
are preserved under automorphisms.
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1. Introduction

Let X be a nonempty set, and let H be a subgroup of the symmetric group &x °n X.
Denote the alternating subgroup of $fx by srfx. Given a transformation / of X, the
semigroup

( / : H) : = ({hfh-1 :heH})

is the H-closure of / (or a group-closure). For any semigroup 5 of transformations
of X, let Gs = [h € &x : hSh~l c 5} and say that 5 is H-normal if Gs = H.

If X is finite, then for a transformation / of X we have that ( / : s/x) and (f :&x)
differ if and only if / is a partial one-to-one nilpotent having the union of its image
and domain equal to X ([5, 8, 7]). In particular, if / is a total transformation, then
( / : sfx) = (f : tfx), and the semigroup ( / : s/x) is a ^-normal semigroup. The
papers cited above address the following problem for a finite set X:

© 2005 Australian Mathematical Society 1446-7887/05 $A2.00 4- 0.00

213



214 Inessa Levi [2]

PROBLEM 1. Let H\, H2 be subgroups of CSX, and let / be a transformation of X.
Find necessary and sufficient conditions for equality of the group closures ( / : H{)
and ( / : H2).

The case of an infinite set X is much more complex than that of a finite X. Here
Problem 1 is addressed in the particular case when X is infinite and the subgroups
of Sfv are normal. We establish necessary and sufficient conditions for two distinct
normal subgroups Hx and H2 oi<Sx to produce equal group closures ( / : Hi) and
{/ : H2) of a one-to-one total transformation / of X.

A semigroup 5 is said to be a ^.-semigroup if its congruence lattice Con(S) forms a
chain. A congruence 6 on a semigroup S is said to be invariant under an automorphism
x(r of 5 if whenever (/, g) € 6 we also have (VK/). ^(g)) € 6. For a transformation
/ of X, let the defect of / be the cardinality of the complement of its image im(/),

def(/) = | X - i

The subset of all the points of X shifted by / is S(f) = {x e X : f{x) £ x) and

shift(/) = |5( / ) | , fix(/) = \X-

Given an infinite cardinal y < \X\, the Baer-Levi semigroup BL(\X\,y) is the
semigroup of all total one-to-one transformations of X with defect y [1]. Baer-Levi
semigroups are idempotent-free left simple, left cancellative A-semigroups whose
congruences are preserved under automorphisms ([9,10,11]). The following problem
was raised in [10].

PROBLEM 2. Characterize all idempotent-free left simple, left cancellative A-semi-
groups whose congruences are preserved under automorphisms.

Let / be a total one-to-one transformation of X such that y = def ( /) is infinite. If
shift(/) = |X|, then ( / : &x) is a Baer-Levi semigroup BL(\X\, y). It was shown
in [10] that for any g € BL(\X\,y), the semigroup {g : ^x) satisfies the conditions
stated in Problem 2. In this paper, for a normal subgroup Hof&x, we characterize the
//-closures of / that satisfy the conditions stated in Problem 2, thereby generalizing
the result of [10] and providing a contribution towards a solution of Problem 2.

2. Background and main results

Let Wx denote the semigroup of all the total one-to-one transformations of an
infinite set X. For any infinite cardinal a not exceeding the cardinal successor |X|+

of |ATj, and any cardinal y < \X\, let

S(X, a, y) = {/ e Wx : shift(/) < a, def(/) = y).
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If «„ < y < a, then S(X,a, y) is a S^-normal subsemigroup of Wx. If y = 0,
then S(X,a,y) is a normal subgroup of the symmetric group &x, and these groups
together with the alternating group &/x constitute the set of all the non-trivial normal
subgroups of Wx ([12]). For brevity, we write S(X, a, 0) as S(X, a).

2.1. Decomposition of one-to-one transformations The elements of Wx — ^x

are referred to as non-permutations in Wx. Just as any permutation may be written
as a formal product of disjoint finite and infinite cycles, any non-permutation in Wx

may be written (essentially uniquely) as a formal product of disjoint cycles (finite or
infinite) and chains [3] (see Proposition 2.1 below). As usual, transformations / and
g are disjoint if S(f) D S(g) = 0. Let A be a set of pairwise disjoint transformations
of X. The formal product of A is a transformation of X, denoted by Y\[f '• f e ^ 1 .
defined by the following formula:

[/(*), if / € A and x e 5 ( / ) ;

\x, if x e X - U{5(/) : / e A},

where x e X. If A c Wx then Y[{f • f £ A} is also in Wx. For a countable ordered
subset Y = [yi, y2, yj,...} of X, let [y^yi •••) denote the transformation / € Wx

such that f{yt) = yi+{ for i = 1, 2, 3 , . . . , and f(x) - x for all x e X - Y. The
transformation / = [y\y2y-$ • • •) is called a chain. Note that X — im(/) = {y\} and
def(/) = 1. The following result has been proved in [3]:

PROPOSITION 2.1. Let f be a non-identity transformation in Wx. Then f is a formal
product of pairwise disjoint cycles and chains, f = fj{^ : g e A}, with no g e A
being a l-cycle. The number of chains in A is equal to def(/). Iff = Y\{g '• S e ^'1
is another such product then A — A'.

We refer to the form f] {/ : / e A} of / as the cyclic-chain decomposition of / . Let
'tfhx c Wx be the set of all formal products of disjoint chains. Proposition 2.1 assures
that every transformation / 6 Wx can be written as a product of two unique disjoint
transformations fp € <£x and fc e ^hx (the subscripts p and c stand for permutation
and chain correspondingly). We let <pn(f) denote the set of all the n-cycles in the
cyclic decomposition of / , where n is either a positive integer or oo.

2.2. Main results The main results of this paper are stated in Theorems 2.2-2.4
below. The remainder of the paper is concerned with the proof of these results.

THEOREM 2.2. Let f be a non-identity transformation in Wx, and let H be a normal
subgroup of£x. Then (f : H) is left simple if and only if

(1) def(/) = y is infinite,
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(2) H = S(X, a) for some a > y,
(3) there exists a positive integer m such that shift(/m) < a.

Lemma 3.10 presents conditions in terms of the cyclic-chain decomposition of /
that are equivalent to Theorem 2.2 (3).

THEOREM 2.3. Let f be a non-permutation in Wx, and let H be a normal subgroup
of(Sx. Then (f : H) is a left cancellative, idempotent-free semigroup. If (f : H)
is left simple, then it is a ^-semigroup whose congruences are preserved under
automorphisms.

THEOREM 2.4. LetX0 <a < ft <\X\+ and let f be a non-identity transformation
in Wx.

(1) If a < 0, then ( / : S(X, a)) = (f : S(X, /?)) if and only i/shift(/) < a.
(2) ( / : sfx) = ( / : S(X, /?)) if and only if either

(a) / is a finite permutation, or
(b) fi = Ko and for some integer k > 1 either \<p2k(f)\ > 1 or |<p2*-i(/)l > 2.

2.3. Properties of one-to-one transformations The first three statements of the
following lemma are easily derived from elementary properties of one-to-one trans-
formations, while the fourth statement presents a well-known result for permutations
(see, for example, [12]), and has been proved for non-permutations in Wx in [3].

LEMMA 2.5. Let f, g e Wx. Then the following hold:

(1) def(fg) = def(/) + def(g).
(2) S(hgh~l) = h(S(g))forallhe <fx.
(3) Ifg i &x. then shift(g) is infinite and shift(/g) < shift(/) + shift(^), equality

holding when shift(/) ^ shift(g).
(4) / = hgh~{ for some h € &x if and only ifdef(f) = def(g), and \cpn(f)\ =
\<pn(g)\foralln = 1,2,..., oo.

For transformations / , g e Wx, let D(f, g) = [x e X : f(x) £ g(x)}.

LEMMA 2.6. For f,g,t€ Wx, if tf = g then

\D(f, g)\ < shift(O < |D(/, g)\+def(f).

PROOF. If / / = g, then / ( D ( / , g)) C S(t) c / (£)( / , g)) U (X - im(/)). •

For a transformation / of X, let C<fx(f) = {h e <£x : hf = fh] denote the
centralizer of / in <SX. The next two results, proved in [6], describe centralizers of
transformations in Wx.
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PROPOSITION 2.7. Take f € Wx and write it as a product of disjoint transfor-
mations f = fpfc, where fp e &x, fc € <£hx. A permutation h € Cyx(f) if
and only if h € Ccfx(fp), h(S(f)) = S(fc), and for each chain [xiX2x3 •••) in fc,
[h(xi)h(x2)h(x3) • • •) is also a chain in fc.

LEMMA 2.8. Let g e &x. Then C&x(g) < srfx if and only if fix(g) < 1 and g is a
product of disjoint finite cycles of distinct odd lengths.

Let Ko < a < $ < \X\+ and let S(X,a) and S(X, 0) be two distinct normal
subgroups of % , so S(X, a) < S(X, /?)• Lemma 2.10 gives a sufficient condition
for equality of ( / : S(X, a)) and {/ : S(X, /?)) for / € Wx. The lemma assures
equality of these group closures whenever / shifts fewer than a elements of X by
demonstrating that both are just the minimal ^-normal semigroups containing / .
These semigroups were described in [3], where the following has been proved.

PROPOSITION 2.9. Let f eWx with shift(/) = a and def ( /) = y.

(1) IfY > K, then (f : <SX) = S(X, a+, y).
(2) Ify is a positive integer, then

(f • &x) 2 {g eWx: shift(£) < a, def(g) = ky, for all integers k > 4}.

Properties of Sf*-normal semigroups have been studied in a number of publications,
see, for example, [9, 2, 3, 11, 13, 14].

LEMMA 2.10. Let f e Wx with shift(/) = o and let a be an infinite cardinal
greater than a. Then (f : S(X, a)) = ( / :

PROOF. We only need to prove that hfh~l € {/ : S(X, a)) for any h € %• Let
Y = S(f) U S(hfh~l) = S(f) U h(S(f)). Then |K| < 2a < a, and the restrictions
fY, hfh^y are total transformations of Y. Also, def(/) = def(hfh~l) and \(pn(f)\ =
\<pn(hfh-x)\ for all n = l , . . . , oo (by Lemma 2.5 (4)), so \Y - im(hfh^l)\ =
|y- im( / | y ) | = def(/) and \<pn(fy)\ = \<pn(hfh^)\ foralln = 1 , . . . , oo. Therefore,
by Lemma 2.5 (4) again, there is a permutation g e &Y such that hfh^} = gf\yg~]''•
Define a permutation h e <£x such that h(x) = g(x), if x e Y, and h(x) = x, if
xeX-Y. Then h e S(X, a) and hfh~x = hfh~x € {/ : S(X, a)). •

3. On algebraic properties of group closures

Throughout suppose that a is an infinite cardinal. Let / be a non-permutation in Wx,
and let H be a normal subgroup of &x- Since the semigroup ( / : / / ) consists of one-
to-one transformations, it is left cancellative. Since any idempotent transformation of
X is the identity on its image, the semigroup ( / : H) is idempotent-free.
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3.1. Left simplicity of ( / : H) The following result shows that for any / € Wx>

{/ : S(X, a)) is a subsemigroup of S(X, a){f) where (/> is the subsemigroup
generated by / .

LEMMA 3.1. Let f e Wx and g = hlfhl~
ih2fh1''

x • ••hkfhk~
l far some ht €

S(X, a), i = 1, 2, . . . , k. Then there exists h e S(X, a) such that g — hfk, and
a.

PROOF. It suffices to show that given any p e S(X, a) there exists q e S(X, or)
such that fp = qf. For this, define q so that q(x) = fpf~\x) if x e im(/) and
q(x) = x otherwise. Then q is a permutation of X that maps im(/) onto itself with
S(q) c f(S(p)), so that shifty) < shift(p) < a.

Now if g = hfk for an / ie S(X, a), then

| im(g) - im(/) | < |/i(im(/)) - im(/) | < shift(/z) < ct. •

Recall that if H = S(X, a) and shift(/) < a then {/ : H) is a ^-normal
semigroup (Lemma 2.10). Such semigroups are left simple when def(/) is infinite.
So we assume that shift(/) > a.

OBSERVATION 3.2. If def(/) = y is a positive integer, the semigroup (/ : H) is not
simple, so it is not left simple. Indeed, in this case {/ : H) contains transformations
with distinct finite defects (Lemma 2.5). For each positive integer k > 2 the set
(g e ( / : H) : def(g) > ky] is a proper ideal of ( / : H).

LEMMA 3.3. Let f e Wx with def(/) = y >K, and let H < &x. If {f : H) is
left simple then H — S(X, a) for some cardinal a with y < a < \X\+.

PROOF. Since ( / : H) is left simple, there exists g e (f : H) such that gf2 = f.
In this case g(X — im(/)) c X — im(/), so X — im(/) c im(g). By Lemma 3.1,
a > | im(g ) - im( / ) | > y. D

COROLLARY 3.4. If def (f) = \X\ and H < yx, then (f : H) is left simple if and
only if H =<$x.

LEMMA 3.5. Let f be a non-permutation in Wx with def(/) = y < a < shift(/).
Suppose that (f : S(X,a)) is left simple. Then
(1) there exists g € (f : S(X, a)) with (g) — y;
(2) there exists a positive integer k such that shift(/t) < a.

PROOF. TO prove (1) take a non-identity permutation h € S(X, No) c S(X, a) such
that S(h) c S(f), where fc is the product of the chains in / . Then D(f, hfh~l) is a
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finite nonempty set. Since ( / : S(X, a)) is left simple there exists g € ( / : S(X, a))
such that gf = hfh~l. By Lemma 2.6 shift(g) < y. Also g e ( / : S(X, a)) implies
that def(g) = y, so shift(g) > y, and hence shift(g) = y.

To prove (2), take g e ( / : S(X, a)) with shift(g) = y, as constructed above,
and write, using Lemma 3.1, g = hfk for some h e 5(X, a), so y = shift(g) =
shift(/i/*) = max(shift(ft), shift(/*)). Since shift(/i) < a, and y < a we have that
shift(/*) < a. •

NOTATION 3.6. Let f e Wx be such that Xo < def(/) < a < shift(/) and
shift(/*) < at for some positive integer k. Use m to denote

m = min{k >2:k is an integer, /* € S(X, a, y)}.

We will use the permutation as constructed below.

NOTATION 3.7. Given a set A of disjoint n-cycles, n •=. 2, 3 , . . . ;oo, with |A| =
1 > ^o. let 7^ be a permutation of X defined as follows. Choose a subset B of A
with |fi| = \A — B\ = r) together with a bijection X from B onto A — B. For each
cycle u in A choose a point xu in 5(M) and let hu be the two-cycle (xu, xk(u)). Let

: « ^ fi}, and note that sh i f ty) = rj.

If ( / : 5(X, a)) is left simple, then, as the next lemma shows, it contains the
semigroup S(X, a, y).

LEMMA 3.8. Suppose that f eWx such that No < def (/) < a < shift(/).

(1) For any cardinal r) with def(/) < r\ < a, there exists a g e (f : S(X, a)) such
that\D(f,g)\ = r,.
(2) / / { / : S(X, a)) is left simple, then

(a) S(X,a,y)c(f:S(X,a)),
(b) ift € ( / : S(X, a)) ands € S(X, \X\+, y) with \D(s, t)\ < a, then

se(f:S(X,a)),
(c) {f:S(X,a)) = (S(X,a),f).

PROOF. Let def(/) = y, shift(/) = a. To prove statement (1) above, write
/ = fpfc as a product of disjoint transformations fp € % and fc € ̂ hx- Since
shift(/c) = y < a < a = shift(/), we have that shift(/p) = a. So there exists an
n > 2 (finite or infinite) such that \<pn(f)\ = a. Choose a subset A of <pn(f) with
\A\ — T) and let h = nA (Notation 3.7), g = hfh~l. To show that g is the required
transformation, it suffices to see that

(3.1) i? = |S(A) | <\D(f,g)\< u e
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F o r th is , t ake x e S ( h ) , let h~l(x) = y ^ x , a n d s u p p o s e (xxi • • •), (yyi • • • ) are
the corresponding n-cycles in A. Then g(x) = hfh~\x) = hf(y) = h(yi) = y\ =
fiy) * fix), so S(h) c D(f,g). Now, if x e X - S{i\{u : u e A}), then
also f(x) e X - S(Y[{u : u e A}), so gix) = hfh'^x) = hfix) = fix), thus
Dif, g) C 5 ( n i « : « e A}), and so (3.1) follows.

To prove statement (2)(a) of the lemma, we first show that for any rj with y < r? < a
there exists t e (f : SiX, a)) such that shift(r) = TJ. Take g € ( / : SiX, a)) with
\Dif, g)\ = n as constructed in the first part of the lemma. Since {/ : SiX, a)) is
left simple, there exists t e {f : SiX, a)) such that tf = g. But then by Lemma 2.6
shift(r) = T), and the semigroup ( / : SiX, a)) contains (t : SiX, a)) = SiX, r)+, y)
(Proposition 2.9).

To prove (2) (b) note that since s, t € ( / : % ) , a left simple semigroup, there exists
u € ( / : 'Sx) such that s = ut. Since shift(«) < a (Lemma 2.6), u € SiX, a, y) C
{/ : SiX, a)), so s € ( / : SiX, a)) also. Now (2) (c) follows from (2) (b) and an
observation that for any h € SiX, a), we have that \DQif, f)\, \D(fh, f)\ <a. •

The next result presents sufficient conditions for the left simplicity of ( / : S(X, a)).

LEMMA 3.9. Let f € Wx with Ko < def(/) < a < shift(/). Suppose that
shift(/m) = r] < a for an integer m > 2. Then

(1) for any g 6 ( / : SiX, a)) there exists t € {/ : S(X, a)) with shift(fg) < /?,
(2) ifv, w e ( / : SiX, a)) and shift(w) = rj, then \Divw, v)\ < rj,
(3) ( / : SiX, a)) is left simple.

PROOF. TO prove (1), write g — hlfhi~lh2fh2~
1---hkfhk~

l for some /i, €
SiX, a), i = 1,2 it. We prove the result by induction on it. If k = 1,
g = hifhr1 and shift(gm) = shift^,/"1/!,"1) = shift(/m) = rj, since Sigm) =
h\iSifm)). In this case we let t = gm~l.

Assume the result is true for any product of at most k — 1 conjugates of / , where
k > 2, and write g = uhkfhk~\ where u = hlfhi~lh2fh2~

l • • -hk^fhk-i~\ By
inductive assumption there exists w € </ : SiX, a)) such that shift(u>w) < q. Let
t = (hkfhk~

l)m-iw. Then

= Sihkf
m-xhk-

lwuhkfhk-
1) c

so shift(f£) < shift(/m) + shift(u;M) < r).
To prove (2), if v, w € # i then D(vw, v) c 5(w), so \D(vw, v)\ < shift(iu).
To prove (3) note that, by Lemma 2.10 and Proposition 2.9, </ : SiX, a)) contains

a left simple semigroup (fm : SiX, a)) = {fm : &x) = 5(X, r)+, y). We show that
for any s,t € </ : SiX, a)) there exists u e (f : SiX, a)) such that as = t. Assume
first that \Dis, t)\ < rj. Since {/ : &x) »s left simple there exists u € {/ : ^x) such
that us = t. By Lemma 2.6 shift(w) < r), and hence u € </m : Sfx) c ( / : SiX, a)).
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Now suppose \D(s, t)\ > r\. By statement (1) of this lemma, there exists w e ( / :
S(X, a)) such that shift(uis) < q, and so, by statement (2), \D(tws, t)\ < r\. Therefore
by the previous paragraph there is a u € ( / : S(X, a)) such that utws = t. •

PROOF OF THEOREM 2.2. Assume that {/ : H) is left simple. By Observation 3.2,
def(/) is an infinite cardinal y. By Lemma 3.3, the group H = S(X, a) for some
a > y. By Lemma 3.5 there exists a positive integer m such that shift(/m) < a.
Conversely, if conditions (1H3) of Theorem 2.2 hold, then by Lemma 3.9, we have
that ( / : S(X, a)) is a left simple semigroup. •

We describe the cyclic-chain structure of / in Wx satisfying the conditions of
Lemma 3.9. Let def(/) = y > Xo, and let a, r] be cardinals with y < rj < a < \X\+.
Set J/f = [n : \yn(f)\ > ??, n is an integer, n > 2). Note that if the set J^f" ^ 0, the
least common multiple lcm(^fCt)) of the integers in J<? may or may not exist, and set

(3.2)

if JV? = 0,

if \cm(<jVp) is a positive integer,

— 1 otherwise.

LEMMA 3.10. Let f be in Wx with y = def(/) > KO) and let r? be such that
y < r) < shift(/). The following are equivalent:

(1) There exists a positive integer m such that shift(/m) < rj;
(2) \<p

PROOF. Let s = \\{u : u e (poo(f)}, if <?<»(/) is nonempty, and let s be the identity
permutation otherwise. Similarly, let t = fj(" : u e <Pn(f), n is an integer, n > 2],
if <Pn(f) is nonempty for some integer n > 2, and let t be the identity permutation
otherwise. Then / = stfc, and since s, t and fc are disjoint, for any positive integer
m we have that fm = smtmf™ with 5( / m ) being the union of three disjoint subsets:
5(sm), S(tm) and 5(/c

m). Also S(sm) = S(s), S(tm) c 5(0, S(fc
m) = 5(/c) ([3]).

Since shift(/f) = def(/)Xo = def(/), we have that shift(/m) < t) if and only if
shift(.sm) = shift(j) < r), and shift(r) < r). But shift(s) = |^ool^«, so shift(5> < rj if
and only if |^oo(/)l < 'J, and shift(fm) < rj if and only if JV^ = 0 or n divides m for
all n e JVJ1, that is fin

f > 0. Hence (1) and (2) are equivalent. •

3.2. Congruences on left simple group closures Given any subsemigroup 5 of Wx

and an infinite cardinal /x, the relation AM = [(s, t) e 5 x S : \D(s, t)\ < /x} is a
congruence on 5. Let A denote the diagonal congruence on 5.

Suppose 5 is the Baer-Levi semigroup BL(\X\, y) = S(X, \X\+, y) for some
infinite cardinal y. It was shown in [11] that the interval [A, A,,+] is a chain in
the congruence lattice Con(S) of S consisting of A and the set of congruences of
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the form A, where Ko < r] < y+ with A,, < Am if and only if rji < rj2. It was
noted in [10] that the arguments of [11], based in part on the left cancellativity and
left simplicity of BL(\X\, y) may be adopted virtually unchanged to show that the
interval [ A, Ay+] is a chain in the congruence lattice of any %-normal subsemigroup
of BL(\X\, y). In [10] this result was extended further as follows.

PROPOSITION 3.11. Let Ko < y < a. Then Con(S(X, a, y)) is a chain consisting
of A and the set {An : Xo < r) < a). Moreover, AY+ is a minimal group congruence
on S(X, a, y).

Now let {/ : S(X, a)) be a left simple semigroup. In view of the above proposition
we may assume that it is not a Sfx-normal semigroup, so (in light of Theorem 2.2 and
Lemma 2.10) No < def(/) < a < a = shift(/), and shift(/m) < a for the least
positive integer m > 2. Certain congruences on ( / : S(X, a)) may be described in
terms of congruences on the group G defined below. Note that shift(/p) = a > a, so
fp i S(X, a), and let

(3.3) G = (fp,S(X,a))

be the subgroup of ^x generated by S(X, a) and fp. Then

(3.4) G = {hfk
p:heS(X,a), k = 0, 1, 2,.. . , m - 1),

and because of the minimality of m this representation of elements of G is unique.
Moreover

hfk
p € S(X, a) o k = 0 modm and \D(hfk

p, qf'p)\ < a & k = / mod m.

The next result follows from (3.3H3.4), Lemma 3.1 and Lemma 3.8 (2) (c).

LEMMA 3.12. Let f e Wx be such that K < Y = def(/) < a < shift(/) and
shift(/m) < a. Then ( / : S(X, a)) = {ht :heG,t e tfhx n S(X, y+, y), h, t are
disjoint}.

OBSERVATION 3.13 (Normal subgroups of G). Let H be a non-trivial normal sub-
group of G. If H < S(X, a), then H = S(X, rj), for some infinite cardinal rj < a, or
H = s/x [12]. Suppose H contains g = hfk $ S(X, a). We show that H contains
S(X, a). Let X,, < £ < a. Since shift(^) > a, choose a subset Y of S(g) of cardi-
nality £ such that g(Y) = Y. There exists a set A of disjoint n-cycles of g\Y for some
n € {2, 3,. . .} U {oo} such that \A\ = £. Form a set B of n-cycles of X by extending
the cycles of A to X by fixing elements of X — Y. Now form nB (Notation 3.7)
so nB € S(X, £+). Consider the commutator y = g~xnBgnB

x e H. Then y is a
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product of 2£ = £ disjoint 2-cycles, so shift(y) = £+. Hence S(X, £+), the normal
closure of y in S(X, a), is contained in H. But £ is arbitrary, so S(X, a) C H. Since
G/S(X, a) = lm, such normal subgroups / / correspond to normal subgroups of lm:
H = {hfk

p e G : k e (n) <Im) where n is a divisor of m.

We may easily adapt the arguments of [11] to show that the interval [A, Ay+] is a
chain in Con((/ : S(X, or))) consisting of A and the set of congruences of the form
A, where No < n < y+. The proof may be accomplished using the elements of the
Sfx-normal subsemigroup S(X, a, y) of ( / : S(X, a)) with the aid of Lemma 3.8 (2).
The consequence of this is stated below.

LEMMA 3.14. Let f e Wx with K < y = def(/) < a < a = shift(/), and
shift(/m) < a for some positive integer m. Then the interval [A, Ay+] is a chain
in Con((/ : S(X, a))) consisting of A and the set {A, : Xo < r\ < y+). Moreover,
AY+ is a minimal group congruence on (f : S(X, a)), and if 9 is a congruence not in
[A,AY+]thenAy+ C.9.

For each divisor n of m, 1 < n < m, define the relation

n = {(hfk
p, qfp) :h,qe S(X, a),k = l mod n)

on G. Then the relation

Tn = [(s, t):s,te(f: S(X, a ) ) , (sp, tp) € VJ

is a congruence on ( / : S(X, a)) that contains Aa. The next lemma describes
the congruences of ( / : S(X, a)} that contain AY+. Let V denote the universal
congruence.

LEMMA3.15. Letf € WxwithXo < y =def(/) < a <shift(/), andshift(fm) <a
for some positive integer m.

(1) (f:S(X,a))/Ay+=G/AY+.
(2) The interval [AY+, Aa] in Con({/ : S(X, a))) is a chain consisting o/{A, :

Y+ <1<<x}-
(3) The interval [Aa, V] is a chain consisting o/V and {Fn : n is a divisor of m,
1 < n < m}.
(4) The interval [Ay+,V] in Con({/ : S(X,a))) is a chain with [Ay+, V] =

[Ay +,Ao]U[Aa,V].

PROOF. Observe that statements (2) and (3) follow from (1) and Observation 3.13,
while statement (4) follows from (2), (3) and the last sentence of the statement of
Lemma 3.14. To prove (1), let g e (f : S(X, a)). By Lemma 3.12, gp e G. Let g
be the class of g in {/ : S(X, a))/Ax +, and let g~p~ be the class of gp in G/Ay+. Let
ir : ( / : S(X, a))/Ay+ -» G/Ay* be defined by V : g n* TP-
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To show that rjr is well-defined and one-to-one, take g = gpgc, t = tptc e {/ :
S(X, a)). Since shift(gc), shift(/c) = y, we have that \D(g,t)\ < y if and only
if \D(gp, tp)\ < y, so 7 = g~ if and only if Tp = ~gp~. To see that \js is onto, take
any hfk

p e G, then u = hfk
pf

k e S(X,a){f) = ( / : 5(Jf,o)> (Lemma 3.8).
Let u = MPMC. Since shift(/c*), shift(Kc) = y, we have that \D(hfk, up)\ < y, so

To see that ^ is a homomorphism, take g = gpgc, t = tptc € {/ : S(X, a)),
and let gt = u = upuc. Again since the shift of the y chains gc, tc, uc is / , and
upuc = u = gt = gptp{t~lgctp)tc, we have that

11,, gPtp)\ < \D(up, upuc)\ + \D(upuc, gptp)\ <y + S(t;lgctptc)\

rp
xgctp)\ + \S(te)\ <y+y + y = y,

•
3.3. Automorphisms Recall that given any semigroup 5 of transformations of X,
Gs = {h e Sf* : hSh~l c 5}. An automorphism i? of 5 is said to be inner if there
exists a permutation h of X such that # : / i->- hfh~[, for each / € 5. A description
of automorphisms of ( / : H), presented below, may be found in [5].

PROPOSITION 3.16. Let f be a non-permutation in Wx, and let H be a non-identity
normal subgroup of #*. Then each automorphism of ( / : H) is inner, and the
automorphism group of (f : H) is isomorphic to

PROOF OF THEOREM 2.3. The non-trivial congruences of a left simple semigroup
S = ( / : S(X, a)) h a v e t h e f o r m A , = {(s, t) : s , t € ( / : S(X, a ) ) , \D(s, t)\ < r)}
for No < r\ < a, or

r n = {(s ,0 : s,t € ( / : S(X,a)), sp = hfk
p, tp = qf'p, h,q € S(X,a),

k = I mod n),

for a divisor n of m, 1 < « < m (Lemma 3.14, Lemma 3.15). Since for any
permutationr e % , and any transformations s, t of X, \Dihsh~1, ht h~[)\ = |D(s, 01.
and all the automorphisms of ( / : S(X, a)) are inner, its congruences of the form A^
are preserved under automorphisms. Similarly, conjugation by permutations preserves
the congruences Fn. •

4. Equality of group closures

We start by considering //-closures of / € Wx with H = S(X, a). In view
of Lemma 2.10, we may concentrate on transformations with a 'large' shift, that is
shift(/) > or.
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LEMMA 4.1. Let Xo < a < p < \X\+ and take f e Wx with a finite non-zero
defect and shift(/) > a. Then (f : S(X,a)) £ (f : S(X, P)).

PROOF. TO show that ( / : S(X, a)) and ( / : S(X, P)) are distinct, it suffices
to find an h in 5(X, P) such that ft/ft"1 $. ( / : S(X, a)). Since def(/) is finite,
ft/ft"1 € ( / : S(X,a)) if and only if ft/ft"1 = qfq'1 for some q € S(X, a)
(Lemma 2.5 (1)), that is q~lh € C% ( /) . We will find an h e S(X, /?) such that
q~lh €&x- C % ( / ) for all q € S(X, a).

Since def(/) is finite, shift(/c) = def(/)No = No. Suppose first that shift(/) =
a > Ko. Then shift(/p) = a > a, and there exists an n = 2, 3, 4 , . . . , oo such
that \<pn(f)\ = a. Choose a subset A of <?„(/) of cardinality a, and let h = nA

(Notation 3.7), so shift(ft) = a and ft e S(X, P) - S(X, a). Suppose that q e &x

such that q~lh e Cyx(f). Then q~lh e Cyx{fp) and q~lh maps each n-cycle of
fp onto an n-cycle of fp (by Proposition 2.7), and so shift(^~') > shift(/i) = a.
Therefore q~l £ S(X, a).

Now suppose that shift(/) = Xo, so S(X, a) = S(X, Xo). Take a chain [x{x2 • • •)
in fc and let h be the product of disjoint transpositions, h = (x\X2)(x3x4) • • •. The
permutation h shifts a countable number of points of X, so ft e S(X, f}) — S(X, a).
It follows from Proposition 2.7 that if q~xh e C%(/) then [^"'ftOci) ^"'ftfo) • • •) is
a chain in fc, so shift(<7~') > No, and again q~l £ (f : S(X, a)}. •

Our aim now is to extend the above result to a transformation / with an infinite or
zero defect.

LEMMA 4.2. Let K < a < p < \X\+, and let f e Wx with def(/) > a. Then
{f:S(X,a))£(f:S(X,P)).

PROOF. Choose a subset A of im(/) with \A\ =a, and a permutation ft € S(X, P)
such that h(A) C X - im(/). Set g = ft/ft"1 € ( / : S(X, /?)}. Then im(g) =
ft(im(/)),and|im(g)-im(/)| >a,sog<£(f: S(X,a)) by Lemma 3.1. •

The next result is concerned with / € Wx that has both shift and fix at least as
large as a.

LEMMA 4.3. Let Ko < a < p < \X\+ and let f e Wx with shift(/) > a and
fix(/) > a. Then {f : S(X, a)) £ (f : S(X, P)).

PROOF. For any t e (f : S(X, a)), we have that \S(t) - S(f)\ < a. Indeed, by
Lemma 3.1, r = ft/* for some ft € 5(X, a) and an integer k > 1. Then S(t) - S(f) c
5(ft), so |5(0 - 5 ( / ) | < shift(ft) < a.
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We construct a transformation g € {/ : S(X, B)) such that |5(g) - 5 ( / ) | > a.
For this choose sets A Q X — S(f) and B c S(f) of cardinality a each. Choose a
bijection r from A onto B and define a permutation h of x as follows:

h(x) =

r(x) if x € A;

r~l(x) if x € fi;

* otherwise.

Then shift(/i) = |A U B\ = a < B, so h e S(X, B), and # = A/A"1 e ( / : S(X, /J))
is the required transformation, since A c S(g) — 5( / ) . •

LEMMA 4.4. Lef Ko < a < B < \X\+, f € Wx with def (/) < a, and fix(/) < a.
Then (f : S(X, a)) ^ </ : S(X, B)).

PROOF. Observe that the sum of shift(/) and fix(/) is |X|. Since fix(/) is less
than a we have that shift(/) = |X|. Since shift(/c) = def(/)«o < aK = a, we
have that shift(/p) = |X|. Thus there exists a largest n > 2 (finite or infinite) such
that \<pn(f)\ = \X\. Let C = 5( Flk : c e ?„(/)}), then \C\ = n\X\ = \X\, since n
is countable. We consider the following three cases.

Case 1. \X -C\ > a. For any t € </ : S(X, a)), we have that \t(C) - C\ < a.
Indeed, using Lemma 3.1, write t = hfk for some h € S(X, a) and an integer k > 1.
Then |*(C) - C| = |/i/*(C) - C\ = \h(C) -C\< shift(/i) < a. We show that there
exists g € ( / : 5(X, 0)) such that |g(C) -C\>a. Choose a subset B of <pn(f) of
cardinality a. For each cycle c in B choose a point in S(c) and let A" be the set of all
the chosen points. Set N = S( Y\{c • c e B}) — K. Since n > 2 and a is infinite, we
have that |AT| = \N\ = a. The shift of / c is «odef(/) < a. Since |X - C| > a, we
may choose a subset L of X — C — 5(/c) of cardinality a. Choose bijections rx from K
onto N, r2 from Af onto L, and r3 from L onto K\ Take a permutation h G 5(X, B)
defined as follows:

n(x) if x 6 AT;

r2(x) if JC e

r3(j:) if x € L;

otherwise.

Then g = hfh~] is the required transformation. Indeed, if * e A7 c C, then
h~l(x) € A, and since n > 2 we have f(h~l(x)) e A7. Therefore,

g(AO = */A-'(AO c A(/(AT)) C h(N) c L c X - C,

so g(C) — C contains the set g(N) of cardinality a, as required.
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Case 2. \X - C\ < a, n is an integer. In this case shift(/") < \X - C\ < a < 0,
so by Theorem 2.2, {/ : S(X, a)) and ( / : S(X, 0)) are left simple semigroups.
Therefore ( / : S(X, 0)) contains S(X, 0, y), where y = def(/) (Lemma 3.8). Take
a set A of a disjoint infinite cycles and a set B of y disjoint chains so that the
cycles in A and the chains in B are also disjoint. Then g = Y\[c : c € AU B] e
S(X, 8, y)-(f : S(X, a)} (Lemma 3.12).

Case 3. \X -C\ < ct,n = oo. For all t e ( / : S(X, a)} we have that fix(f) < a.
Indeed write t = hfk for some h e S(X, a) and an integer k > 1, and note that
C c S(fk). Then fix(r) < \S(h) U (X - C)\ < a.

We show that there exists g e ( / : S(X, 0)) such that fix(g) > a. Choose a subset
B of(Poo(f) of cardinality a, and let A = S(\~[{c : c G B}). Then f(A) = A and
the restriction f\A of / to A is a product of disjoint infinite cycles. Therefore, there
exists a permutation r of A such that r/jAr~' = f~\A. Define a permutation h of X
so that h(x) — r(x) if x e A, and f{x) = x otherwise. Then shift(/i) — a, so h €
S(X, 0) - 5(X, a), and g = / z / / r ' / € ( / : S(X, 0)) is the desired transformation.
Indeed A £ X - S(g) and so fix(^) > a. •

PROOF OF THEOREM 2.4. We first prove, under the assumption a < 0, that ( / :
S(X, a)) = (f : S(X, /3)> if and only if shift(/) < a. Indeed, if shift(/) < a, then
Lemma 2.10 ensures that ( / : S(X, a)) = (f : &x) = if • S(X, 0)). Suppose that
shift(/) > a, we prove that ( / : S(X,a)) ^ ( / : S(X, 0)). Lemmas 4.1 and 4.2
prove the result if def (/) is either a positive integer or an infinite cardinal greater than
or equal to a. If fix(/) > a, the result is proven in Lemma 4.3, while if fix(/) < a
and def (/) < a, the result is proven in Lemma 4.4.

We now turn to the second part of Theorem 2.4, establishing the conditions for
equality

(4.1) (f:*/x) = (f

Since {/ : stfx) c ( / : S(X, Ko)> c ( / : S(X, 0)), (4.1) is equivalent to

(4.2) {/ : s/x) = ( / : S(X, Ko)> and ( / : S(X, Ko)) = ( / : S(X,

If / G J#X, then ( / : srfx) is a normal subgroup of a/x, so ( / : $tfx) = srfx =
(/ : S(X, Xo)> = ( / : &x). If / e S(X, Ko) - $fx then ( / : sfx) D stfx, and so
{/ : stfx) = S(X, Ko) = </ : S(X, Ko)> = ( / : <£x).

We assume now that (4.1) holds and / is a non-permutation, so shift(/) > KH.
Then it follows from the second equation of (4.2) and the first part of Theorem 2.4
that p = Ko. Let q be a finite odd permutation, and let / = qfq~x € ( / : S{X, Ko))
= (f '• -^x)- We will show that / = hfh~x for some h € &fx. Indeed, there
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exist permutations hu...,hk e &/x that t = hlfhl~
lh2fh2~

l...hkfhk~
i. By

Lemma 3.1, there exists q e S(X, Ko) such that t = qfk. If def(/) is finite, then
k = 1 by Lemma 2.5 (1). Assume that def(/) is infinite. Since shifty) is finite,
| im(/) - im(/)| = | im(/) - <?(im(/))| < Xo. If k > 2, | im(/) - im(/*)| >
| im(/) - im(/2) | = def(/) > No, so | im(/) - im(r)| > K also. Therefore, it = 1
again. Thus / = hfh~x for some h € srfx.

The equality qfq~l = hfh~x implies that the odd permutation q~lh is in Cyx(f).
Hence C % ( / ) n S(X, Xo) £ srfx. Let g be an identity transformation of X if fp

has no infinite cycles, and g = J~J{c : c € #>oo(/)} otherwise. By Proposition 2.7,
<7~'/i € Cyx(fp) and <y-'/i is the identity on S(fcg). Set Y = X - S(fcg). Then
the restriction q~xhw of q~lh to Y is a finite odd permutation in Ccfy(f\Y). Applying
Lemma 2.8 to (fp)\Y we deduce that (fp)\Y contains either a (2£)-cycle or at least two
(2k — l)-cycles for some integer k > 1 (so if k — 1 then (fp)\Y contains at least two
fixed points).

Conversely, assume that /S = Ko and / contains either a (2&)-cycle or at least
two (2k — l)-cycles for some integer k > 1. Since the index [S(X, Ko) : s/x] = 2,
adopting the argument of [4], we deduce that to demonstrate the equality ( / : s/fx) =
( / : S(X, No)) we only need to construct h e S(X, No) - srfx such that hfh~l € ( / :
srfx). If <p2k(f) 5̂  0 for some integer k > 1, choose h to be a cycle in (pik(f) and
then hfh~l = / € ( / : s/x). If |^2*-i(/)l > 2 for some integer Jfc > 1, choose
two distinct (2k — l)-cycles (xtx2 • • • *2*-i) and (y\y2 • • • y2k-i) in Vu-iif) and let
h = (x\yx)(x2y2)... (x^-iyu-i) be the indicated product of transpositions, so again
hfh~l = / e < / : £/x >. Finally, if / is a finite permutation then all conjugates
of / are also finite permutations and it follows quickly that ( / : srfx) = (f : S(X, /3)>,
completing the proof of the theorem. •
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