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Abstract

We study the half-dependent problem for the king graph Kn. We give proofs to
establish the values h(Kn) for n ∈ {1, 2, 3, 4, 5, 6} and an upper bound for h(Kn) in
general. These proofs are independent of computer assisted results. Also, we introduce
a two-player game whose winning strategy is tightly related with the values h(Kn).
This strategy is analyzed here for n = 3 and some facts are given for the case n = 4.
Although the rules of the game are very simple, the winning strategy is highly complex
even for n = 4.
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1 Introduction

Suppose that you are competing in a two-player game in which you and your opponent
attempt to pack as many “prisoners” as possible on the squares of an n × n checkerboard;
each prisoner has to be “protected” by an appropriate number of guards. Initially, the board
is covered entirely with guards. The players – designated as “red” and “blue”, with red
going first – take turns adjusting the board configuration using one of the following rules in
each turn:

I. Replace one guard with a prisoner of the player’s color.

II. Replace one prisoner of either color with a guard and replace two other guards with
prisoners of the player’s color.

That is, each player takes a turn increasing the total number of prisoners by one. We require
that, at every stage of the game, the number of guards adjacent to a given prisoner is not
less than the number of prisoners lying adjacent to that prisoner. The squares adjacent to
a given square are those squares, situated directly above, below, to the left, to the right, or
diagonal to the square in question. An arrangement of prisoners and guards that satisfies
this requirement and has exactly one occupant per square is called a valid board. The game
ends when neither player can further adjust the board using rules I and II while maintaining
a valid board. The player whose color represents more prisoners is the winner. This is the
game of Prisoners and Guards – a game that can be played and analyzed without extensive
knowledge of mathematics. We invite the reader to play the game online by running the
Java Applet available at http://csc.colstate.edu/woolbright/.

The guards in this game are related to the half domination set in the king’s graph
as introduced in a paper by Dunbar, Hoffman, Laskar, and Markus [3]. Similar domination
problems have been studied by Bode, Harborth, and Harporth [2], Dutton, Lee, and Brigham
[4], Watkins, Ricci, and McVeigh [9] and many others. Two concepts in the domination
literature very closely related to ours are those of unfriendly partition [1] and global offensive
alliance [8]. At the end of Section 4 we show how some of our estimates relate to a general
result in [8].

The Prisoners and Guards game originated as a puzzle created by the third author with
a focus on minimizing the size of the dominating set (the guards).

In the two-player game, one fundamental question that naturally arises is “How do we
decide when the game is over?” The short answer is that the game is over when the board
configuration has reached a maximal state. A valid board to which no adjustments can be
made to increase the total number of prisoners is called a maximal board. One can also
define a maximum configuration as being an arrangement of prisoners and guards that has
the greatest number of prisoners of all valid boards. Clearly, every maximum configuration
is a maximal configuration. For n ∈ {1, 2, 3} all maximal boards are also maximum configu-
rations. We will see examples of 4×4 boards that are maximal but do not contain maximum
configurations. Let P (n) denote the number of prisoners in a maximum configuration. Find-
ing the exact values of the sequence {P (n)}∞n=1 will help us determine when to end the game.
It also proves an interesting avenue for exploration on its own.
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Since the lone square on a 1 × 1 board has no adjacent squares, we can place a prisoner
in it and be sure that there are at least as many guards as prisoners lying in all adjacent
squares – none. Therefore, we have P (1) = 1. By exhaustively checking all sixteen 2 × 2
cases, we find eleven valid boards, each having zero, one, or two prisoners. Thus, P (2) = 2.
We analyze the cases n = 3, 4, 5, and 6 in sections 2 and 3. Exact values for P (n),
n ∈ {7, 8, 9, 10, 11}, are P (7) = 28, P (8) = 39, P (9) = 49, P (10) = 59 and P (11) = 73, and
for the corresponding maximum configuration one can consult a paper by Ionascu, Pritikin,
and Wright [7], who employ among various methods binary linear programming techniques
in the study of P (n). However, in this paper we include proofs for the above mentioned
cases which are independent of computer searches and short enough to be read with ease.
In Section 4 we also obtain an upper bound on P (n); this is about the best that we can say
for n ≥ 12. In Section 5 we show how this technique from Section 4 can be used in order to
completely answer the best density 1/2-domination problem in grid type graphs.

2 The game analysis for n = 3 and n = 4

Playing Prisoners and Guards on a 1×1 board or on a 2×2 board is not all that interesting.
When we increase the board size slightly and consider the game on a 3 × 3 board, strategy
becomes more of a factor. We will see that the arrangement in Figure 1 is a maximum
configuration, as we establish in Theorem 2. We use the diamond to represent prisoners and
blank squares represent guards.

� �

� �

� �

.

Figure 1: Maximum 3x3 Board

In fact, this is the only maximal arrangement (up to a rotation). Let us observe that a
maximal board permits no adjustments using either Rule I or Rule II. First we consider
arrangements that are maximal with respect to Rule I (i.e. one cannot simply add more
prisoners in the existing configuration).

Perhaps it is not difficult to convince oneself that any valid board having zero, one, or two
prisoners can be adjusted using Rule I; after factoring out rotations and reflections, there are
ten unique cases to check. Therefore, a maximal board must have at least three prisoners.
Figure 2 depicts all valid boards (up to rotations and reflections) that contain three, four,
or five prisoners and are maximal with respect to Rule I.

Each one of these configurations can be adjusted to match the arrangement in Figure 1
by using Rule II (and one or more adjustments using Rules I and II in some of the cases). It
follows that a maximal 3 × 3 board must contain at least six prisoners. We record this fact
in the following lemma.

Lemma 1. Any maximal 3 × 3 board has at least six prisoners.
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Figure 2: 3 × 3 Boards that are Maximal w.r.t. Rule I

With Figure 1, we see that a valid 3 × 3 configuration can have six prisoners. Does
there exist a valid configuration with more than six prisoners? Suppose that a 3 × 3 board
arrangement contains seven prisoners (and two guards). Since there are four non-corner edge
squares, a prisoner must occupy at least one of them. Since this prisoner lies adjacent to at
most two guards, the board cannot be valid. These observations, Lemma 1, and the fact that
Figure 1 depicts a valid configuration with six prisoners lead us to the following conclusion.

Theorem 2. A maximum 3 × 3 board contains six prisoners, i.e. P (3) = 6.

As a matter of fact, the configuration shown in Figure 1 is the only maximal 3× 3 board
(up to a rotation of the board). From this we learn that the second player has a good chance
to win by using Rule II all of the time. The first player may force a tie if she can lead the
board configuration in such a manner that will require her opponent to use Rule I. In fact,
this is manageable if she plays into the pattern in Figure 1, forcing the second player to use
Rule I in the last step and so the final board will have an equal number of prisoners of each
color.

We now turn our attention to 4 × 4 boards. This board size proves interesting because
there exist many maximal arrangements that are not maximum configurations. We include
some maximal arrangements with eight prisoners in Figure 3 that we found but there may
be others.
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Figure 3: Some Maximal 4 × 4 Boards

If we factor out rotations and reflections of the board, there are three maximum arrange-
ments as depicted in Figure 4. We obtained these via an exhaustive search of all 4× 4 valid
boards and verified that there are no other equivalence classes.

To prove something about maximum 4 × 4 board configurations, it helps to dissect the
board and consider what can happen in the vicinity of the corner squares. Suppose that we
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Figure 4: Maximum 4 × 4 Boards

have a 2 × 2 block C of squares situated in one corner of the board. If the corner square
within C does not contain a guard, then it contains a prisoner. If the latter is the case, then
C must contain at least two guards. Thus we have established the following fact.

Lemma 3. If C is a 2 × 2 corner block within a valid board (n ≥ 2), then it must contain
at least one guard.

With this in mind, we are equipped to consider maximum 4 × 4 boards by partitioning
them into four 2 × 2 corner blocks and following through with the consequences. This will
lead us to the conclusion of the next proposition.

Proposition 4. P (4) = 9. That is, every maximum 4 × 4 valid board has nine prisoners.

Proof. Since the configurations in Figure 4 are valid and each contains nine prisoners, it
follows that P (4) ≥ 9. It is enough to show that P (4) ≤ 9. We therefore assume that there
exists a valid board B with ten or more prisoners. By dropping prisoners if necessary, we
can say there are exactly ten. We shall see that this leads to a contradiction. We partition
B into four 2 × 2 blocks as indicated in Figure 5(a).

,

(a)

� G
� � G

G G

(b)

,
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(c)

Figure 5: Block Partitions of a 4 × 4 Board

Since by assumption the board contains ten prisoners, it follows from Lemma 3 that
at least two of these blocks must contain three prisoners each. Without loss of generality,
assume that the upper left block is one of them. We see in the proof of Lemma 3 that the
lone guard must lie in square b11, as depicted in Figure 5(b).

For the board to be valid, the non-corner edge prisoners in b12 and b21 must each lie
adjacent to three guards. This is only possible if guards lie in the squares b13, b23, b31, and
b32, as Figure 5(b) indicates. As previously noted, at least two of the blocks must contain
three prisoners each. The only way to achieve this will be for the lower right block to have
three prisoners, with a guard in b44 as shown in Figure 5(c).

Now we see that the prisoners situated in squares b34 and b43 necessitate the presence
of guards in squares b24 and b42. By placing prisoners in all squares not yet committed, we
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will have a total of only eight prisoners on the board, contradicting our assumption that the
board has ten prisoners. Thus, our assumption was invalid.

3 Analysis of the 5 × 5 and 6 × 6 Cases

In our analysis of 5 × 5 and 6 × 6 board configurations, we will partition the boards into
3 × 3 blocks. The following lemma will help in the examination of these blocks.

Lemma 5. If C is a 3 × 3 corner block within a valid board (n > 3), then it must contain
at least three guards. Moreover, if C contains exactly three guards, then it must contain a
prisoner diagonally opposite (within C) to the corner square.

Proof. Assume that there exists a valid n × n (n > 3) board configuration with a 3 × 3
corner block C that contains only two guards. Without loss of generality, suppose that C is
situated in the upper left corner of the board. Since four guards are required to protect a
prisoner residing on an interior square, and we have two guards, a guard must occupy c22.
Since, by assumption, there remains only one more guard, there must lie a prisoner in c12 or
c21. However, three guards are required to cover a prisoner that is situated in a non-corner
edge square. Hence, the board cannot be valid and we have a contradiction.

To establish the last part of our lemma, let us observe that since one guard must occupy
c22, if another one of the guards were located in c33 then we would have a prisoner in either
c12 or c21 without a sufficient number of adjacent guards.

Possible arrangements, up to a reflection about the main diagonal, appear in Figure 6.
As we can see, all these configurations have a prisoner in c33.
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Figure 6: Possible 3 × 3 UL Corner Blocks With 3 Guards, (n > 3)

Now, we are ready to consider the 5 × 5 case. The only maximum configuration (up to
rotations) is illustrated in Figure 7. Proposition 6 establishes that this is a maximum 5 × 5
board configuration.
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Figure 7: The Maximum 5 × 5 Board Configuration
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Proposition 6. A maximum 5 × 5 board configuration contains fifteen prisoners; that is,
P (5) = 15.

Proof. Assume that there exists a valid 5× 5 board configuration with 16 or more prisoners.
We will see that this leads to a contradiction.

Divide the 5 × 5 board into two opposite (overlapping) corner 3 × 3 blocks, A and C,
that have a square in common and two 2× 2 opposite corner blocks, B and D, as illustrated
in Figure 8(a).

A A A B B
A A A B B
A A A/C C C
D D C C C
D D C C C

(a)

A A �

A A � �

A A A/C
D D C C C
D D C C C

(b)

A A �

A A � �

A/C
� � C C

� C C
(c)

Figure 8: Partitions of the 5 × 5 Board

According to Lemma 5, the two 3 × 3 blocks A and C collectively contain at most
2(6) − 1 = 11 prisoners since the shared square (common to blocks A and C) must contain
a prisoner if at least one of blocks A and C has six prisoners. Hence at least one of the 2× 2
blocks must have three prisoners.

Recall that Lemma 3 establishes that each of blocks B and D contains at most three
prisoners. Thus, for the board to contain a total of at least sixteen prisoners we must find
either ten or eleven prisoners shared in blocks A and C.

Case 1. Blocks A and C share 11 prisoners. In this case, one of the 2 × 2 blocks
holds three prisoners and the other holds at least two prisoners. Also the blocks A and C
must have six prisoners each. Without loss of generality, let us suppose that the B block
has three prisoners; then the one guard must lie in the (1,5) position. To cover the three
prisoners in block B, guards must be placed in the (1,3), (2,3), (3,4), and (3,5) positions
(refer to Figure 8(b)). For the board to be valid, block A (or its diagonal reflection) must
match one of the corner blocks depicted in Figure 6. None of these allows guards in both the
(1,3) and the (2,3) positions. Therefore, the board is not valid and we have a contradiction
in this case.

Case 2. Blocks A and C share 10 prisoners. In this case, each of the 2 × 2 blocks
B and D holds three prisoners. In order to maintain a valid board configuration, we are
then forced to place guards in the (1,3), (1,5), (2,3), (3,1), (3,2), (3,4), (3,5), (4,3), and (5,3)
positions as indicated in Figure 8(c). But then there remain only nine uncommitted squares
in which to place the ten prisoners that blocks A and C are supposed to share. Thus, we
also find a contradiction in this case.

For n = 6 all maximum boards amount to rotations or small perturbations of the ar-
rangement in Figure 3, the validity of which yields the lower bound P (6) ≥ 22. We will show
that, in fact, P (6) = 22 by an analysis of manageable size. Dunbar, Hoffman, Laskar, and
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Markus assert (without proof) a fact about 1/2-domination in the king’s graph dimension 6
which, if true, implies that P (6) = 22 [3]. This is indeed the case, as we shall establish next.
We use a more specific version of Lemma 5 in order to obtain this fact.

� � � �
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Figure 9: A Maximum 6 × 6 Board Configuration

Lemma 7. If C is a 3 × 3 corner block holding six prisoners within a valid board (n > 3),
where c11 is the corner square, then up to a diagonal symmetry the block has one of the four
arrangements in Figure 6.

Proof. By Lemma 5, the position c22 must have a guard as we have seen and also one of
the positions c12 or c21 must have a guard or we will require four guards to cover it. By
symmetry we can assume we have a guard at c12. If we have a prisoner at c21 then this leaves
three possibilities for the third guard. Adding in the case with guards in c21 and c21, we see
that there are only four configurations (up to rotation and/or diagonal reflection), as shown
in Figure 6, of 3 × 3 corner blocks that contain six prisoners.

Proposition 8. A maximum 6×6 board contains twenty two prisoners. That is, P (6) = 22.

Proof. We have observed that P (6) ≥ 22. To verify that P (6) ≤ 22 let us assume the
existence of a valid arrangement C with 23 prisoners; we shall see that this leads to a
contradiction. By Lemma 5, three of the four 3 × 3 corner blocks have six prisoners and
one has five prisoners. Without loss of generality, we may assume that the block with five
prisoners is the lower right one. By Lemma 7 and by symmetry, we can assume that the
block in the upper left corner is one of those in Figure 6. Possibilities for the upper right 3×3
corner block can be generated from arrangements found in Figure 6 first by reflecting them
about their vertical axis. Secondly, three more possibilities are generated by reflecting about
counter-diagonal of what is obtained after the first reflection. We summarize the possibilities
for the upper right block in Figure 10.
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Figure 10: Possible Upper Right 3 × 3 Corner Blocks

Technically we need to analyze 28 possibilities but let us observe that by taking any of
the four arrangements in Figure 6 as the upper left corner and any of the arrangements in
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Figure 10 with the exception of the third one, in the upper right corner, will put a prisoner
in the c14 position which will not be adequately covered by guards. If we choose the third
configuration from Figure 10 in the upper right corner, then this will put a prisoner at c24

which will not have enough guards around it. This contradicts the existence of a configuration
with 23 prisoners or more.

We suspect that this block partition approach can be adapted to compute or bound P (n)
for larger sizes of n, although this approach could turn out to be quite lengthy. These proofs
may very well be pursued as undergraduate research projects.

4 Upper bound for P (n) and the deficiency function

As the board size grows larger, establishing the exact number of prisoners on a maximum
board becomes increasingly difficult. The proof of Proposition 4 foreshadows the importance
of finding useful upper bounds on P (n). In this section, we construct a tool that will help
in establishing these bounds – the deficiency matrix. We then use the deficiency matrix to
determine a general upper bound for P (n).

Suppose that we have fixed the board size at n×n (n ≥ 3). With each configuration, we
associate a binary matrix X = (xij) defined by

xij =

{

1, if a prisoner lies in the (i, j) position;
0, if a guard lies in the (i, j) position.

Many who work in combinatorics and graph theory, such as Hedetniemi, Hedetniemi, and
Reynolds [6] have employed this idea. In any local measure of optimality we must be attentive
to the number of prisoners lying in squares adjacent to a particular square; we let x∗

ij denote
the number of prisoners lying in squares adjacent to the (i, j) square.

The deficiency matrix serves as an ad-hoc, local measure of the optimality of a given board
configuration. Its construction arises from our observations and conjectures of maximum
board configurations. We define the deficiency matrix δ = (δij) by

δij = expectation − x∗
ij, where

expectation =































1, if (i, j) is a corner square with xij = 1;
2, if (i, j) is a corner square with xij = 0;
2, if (i, j) is an edge square with xij = 1;
4, if (i, j) is an edge square with xij = 0;
4, if (i, j) is an interior square with xij = 1;
6, if (i, j) is an interior square with xij = 0.

Figure 11 depicts a 4 × 4 non-maximal board configuration and its corresponding defi-
ciency matrix. The positive entries in the deficiency matrix indicate areas of the board that
are thought to be less than optimal; the 2’s indicate that the “worst” deficiencies occur on
the corresponding interior squares.
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1 0 2 0
0 2 0 1
0 0 1 0

Figure 11: Non-maximal 4 × 4 Board and Its Deficiency Matrix

Since we use these values to obtain an upper bound on P (n), it helps to first consider
bounds on δij for 1 ≤ i, j ≤ n. Suppose that the (i, j) square contains a prisoner. If (i, j) is a
corner square, then at least two of the three adjacent squares must contain guards; therefore
x∗

ij ≤ 1 and in checking our expectation value above we see that δij ≥ 0. Likewise, if (i, j)
is an edge square containing a prisoner or an interior square with a prisoner, we find that
δij ≥ 0.

Suppose that we find a guard in a corner square (i, j). Then three squares lie adjacent to
this square, so we find at most three prisoners in the neighboring squares. Therefore, x∗

ij ≤ 3
and so δij ≥ −1. Via similar considerations, we find that if a guard occupies an edge square
then δij ≥ −1 and for an interior square we get δij ≥ −2.

We define the net deficiency of a board configuration as the sum of all entries in the
deficiency matrix,

∆ =
n

∑

i,j=1

δij.

For instance, the board configuration in Figure 11 has a net deficiency of 8. We expect
maximum board configurations to correspond to minimum net deficiency values. We will
relate ∆ to the overall number of guards in a given board configuration. Let PC and GC

denote the total number of prisoners and guards, respectively, found in the corner squares.
Similarly, PE and GE refer to the prisoners and guards in edge squares, and PI and GI refer
to prisoners and guards in interior squares. With this notation we have

∆ =
∑

corners δij +
∑

edges δij +
∑

interior δij

≥ (0 · PC − 1 · GC) + (0 · PE − 1 · GE) + (0 · PI − 2 · GI)
= −GC − GE − 2 · GI .

This establishes the next lemma.

Lemma 9. The net deficiency of a given configuration satisfies the inequality ∆ ≥ −GC −
GE − 2 · GI .
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Now we are ready to think about bounding the size of P (n). Observe that

4xij + x∗
ij =

{

8 − δij, if xij = 1 and (i, j) is an interior square;

6 − δij, if xij = 0 and (i, j) is an interior square.

3xij + x∗
ij =

{

5 − δij, if xij = 1 and (i, j) is an edge square;

4 − δij, if xij = 0 and (i, j) is an edge square.

2xij + x∗
ij =

{

3 − δij, if xij = 1 and (i, j) is a corner square;

2 − δij, if xij = 0 and (i, j) is a corner square.

(1)

Theorem 10. The number of prisoners in a valid configuration is given by

P =
3n2

5
−

4n

5
+

1

10
(3PE + 6PC − ∆). (2)

Proof. Summing the left hand sides of the equations in (1) over all squares of the board, we
obtain

4·PI+3·PE+2·PC+
∑

1≤i,j≤n

x∗
ij = 4·PI+3·PE+2·PC+8·PI+5·PE+3·PC = 12·PI+8·PE+5·PC .

We will equate this result with the sum of the right hand sides. In summing over the
interior squares that contain prisoners, this contributes 8 − δij = 6 + 2 − δij for each such
square, whereas the interior square that contain guards contribute only 6 − δij per square.
There are (n−2)2 interior squares, so altogether these sum to 6(n−2)2+2 ·PI −

∑

int. sqrs. δij.
Similarly summing the right hand sides over all edge squares we get 4 [4(n − 2)] + 1 · PE −
∑

edge sqrs. δij. Summing over the corners yields 8 + 1 · PC −
∑

corner sqrs. δij. Combining these
right-hand sums and equating with the left-hand sum, we obtain the equation

12PI + 8PE + 5PC = 6(n − 2)2 + 2PI + 16(n − 2) + PE + 8 + PC − ∆

or
10PI + 7PE + 4PC = 6n2 − 8n − ∆.

Then since P = PI + PE + PC we then obtain

10P = 6n2 − 8n + 3PE + 6PC − ∆,

which leads to (2).

By combining the inequality in Lemma 9 with this theorem, we obtain a crude upper
bound on P (n).

Corollary 11. In a maximum configuration of prisoners and guards on a n × n board the
number of prisoners obeys the inequality

P (n) ≤
2n2 + n

3
. (3)
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Proof. Using Lemma 9 and (2) we obtain

P (n) ≤
3n2

5
−

4n

5
+

1

10
(3PE + 6PC + 2GI + GE + GC)

=
3n2

5
−

4n

5
+

1

10

[

2PE + 5PC + 2(n − 2)2 − 2PI + 4(n − 2) + 4
]

=
3n2

5
−

4n

5
+

1

10

[

2PE + 5PC + 2(n − 2)2 − 2P + 2PE + 2PC + 4n − 4
]

.

This implies

(

1 +
1

5

)

P (n) ≤
3n2

5
−

4n

5
+

1

10
(4PE + 7PC + 2n2 − 4n + 4)

≤
3n2

5
−

4n

5
+

1

10

[

(4)(4)(n − 2) + (7)(4) + 2n2 − 4n + 4
]

=
4n2 + 2n

5
.

Therefore P (n) ≤

(

5

6

)(

4n2 + 2n

5

)

=
2n2 + n

3
.

From Proposition 14 in [3] one can heuristically obtain the upper bound of P (n) as being
about 2

3
n2 as we have just seen, by neglecting the boundary vertices. We believe that

∆ ≤ O(n) in general. This fact is equivalent to P (n) ≤ 3n2/5 + O(n). However we can
tighten the upper bound (3) by getting a better estimate for ∆.

Lemma 12. In a valid configuration the net deficiency satisfies

∆ ≥ −1 · G = −1(GI + GE + GC).

Proof. Recall our previous observations about the possible range of values for δij. If the (i, j)
board position contains a prisoner then from the definition it follows that δij ≥ 0. If the
square is a corner or edge square containing a guard then δij ≥ −1. For an interior square
containing a guard, we have noted that δij ≥ −2. Let us focus on this last case.

Suppose that a guard occupies the (i, j) interior position in a valid board configuration
and that δij = −2. Then it must be the case that all adjacent squares contain prisoners, as
depicted in Figure 12(a). The g’s denote guards that are then forced into the arrangement in
order for the configuration to be valid. We see that each of the prisoners in the squares diago-
nally adjacent to this position lies adjacent to five or six guards (depending on the occupants
in the squares marked with asterisks). The possible deficiency values for neighboring squares
appear in Figure 12(b). Summing these deficiency values, we find that the net contribution
of the 3 × 3 block satisfies 2 ≤ ∆local ≤ 6. Notice that, as the g’s in Figure 12(a) suggest, it
is not possible for two such 3× 3 blocks around guards with deficiency −2 to overlap. Thus,
we see that each guard on the board contributes a net deficiency value not less than −1.

Summing the δij’s over all board positions, we have ∆ =
∑

prisoners δij +
∑

guards δij ≥
−1 · G.

12



∗ g g g ∗
g � � � g
g � � g
g � � � g
∗ g g g ∗

(a)

1, 2 0 1, 2
0 -2 0

1, 2 0 1, 2

(b)

Figure 12: Local Configuration Near a Guard with Deficiency -2

Using this bound on ∆ in Theorem 10, we obtain a better upper bound for P (n). The
calculations parallel those used in the proof of Corollary 11.

Theorem 13. For an n× n maximum arrangement of prisoners and guards, the number of
prisoners, P (n), satisfies the inequality

P (n) ≤
7n2 + 4n

11
. (4)

Proof. By Lemma 12, −∆ ≤ G. Applying this upper bound in Theorem 10, we get

P ≤
3

5
n2 −

4

5
n +

1

10

[

3PE + 6PC + G
]

=
3

5
n2 −

4

5
n +

1

10

[

3P + 3PC − 3PI + G
]

=
3

5
n2 −

4

5
n +

1

10

[

2P + 3
(

PC − PI

)

+ n2
]

.

Subtracting 2
10

P from both sides and combining the n2 terms, we see that this implies

8

10
P ≤

7

10
n2 −

4

5
n +

3

10

(

PC − PI

)

≤
7

10
n2 −

4

5
n +

3

10

(

4 − P + PE + PC

)

≤
7

10
n2 −

4

5
n +

3

10

(

4 − P + 4n − 4
)

.

The claim now follows after a bit of arithmetic.

Let us mention here that according to [8], the global offensive number γ0 of a graph is
the minimum cardinality of a global offensive alliance in that graph. An offensive alliance
in a graph is a set of vertices, say O, with the property that a majority of the vertices in
the neighborhood of every vertex in the boundary of O is in O. An offensive alliance O is
said to be global if it affects all vertices not in O. It is easy to see that in the king’s graph
a minimum cardinality offensive alliance must be global. If we think of the vertices in such
a global offensive alliance as guards and the rest of the vertices as prisoners we observe that
the restriction on the prisoners is a little stronger than in our problem. This means that
every minimum cardinality offensive alliance in the king’s graph gives a valid configuration
of prisoners versus guards in our domination problem. Hence n2 − γo ≤ P (n). Since the

13



number of edges in the king’s graph is m = 4n2−6n+2 for an n×n board, and the maximum
degree is 8, we get from Theorem 7 in [8] that

γo(Kn) ≥ ⌈
9n2 − 12n + 4

25
⌉.

For every n ≥ 2, this inequality follows from (4) as a corollary.

Corollary 14. The global offensive alliance number γo for the king’s graph associated with
an n × n board satisfies

γo(Kn) ≥ ⌈
4n2 − 4n

11
⌉.

5 Grid type graphs and half-dependent best density

arrangements

Thus far we have considered the Prisoners and Guards game using the king’s graph to deter-
mine which board squares are adjacent. The “grid graph” provides another variation that
graph theorists contemplate in domination problems; in this context we consider adjacent
squares to be those that lie directly above/below or left/right of a particular square. This
rule for adjacency resembles the movements of a rook on a chessboard, assuming the rook’s
move is limited to one square at a time.

If Pn denotes a path with n vertices and Cn is a cycle with n vertices, we will consider
the naturally defined half-dependent problem in each of the three customarily grid type
graphs: Gn := Pn × Pn (the usual grid graph), GCn := Cn × Pn (cylindrical grid graph),
and GTn := Cn × Cn (toroidal grid graph). We are going to use the model of an n × n
chess board in order to think about these graphs. The half-dependent problem in each one
of these graphs is to determine the maximum cardinality of a set of prisoners such that
each one has at least as many guards around (neighbors) as other prisoners. Let us denote
by Pgrid(n), Pgrid cylinder(n), and Pgrid torus(n) respectively, the maximum cardinality of a
(1/2)-dominating set of prisoners in each of the corresponding graphs as above.

As shown in [7] we can easily derive that the following limits exist and in fact

lim
n→∞

Pgrid(n)

n2
= lim

n→∞

Pgrid cylinder(n)

n2
= lim

n→∞

Pgrid torus(n)

n2
:= ρ1/2(grid).

This is based on the fact that lim supn→∞

Ptorus(n)
n2 exists and one shows that

ρ1/2(grid) = lim sup
n→∞

Pgrid torus(n)

n2
.

From Figure 13, we notice that in the toroidal case the following arrangement in GT3 (the
shaded squares are prisoners and the unshaded represent guards) gives

ρ1/2(grid) ≥ 2/3.

14



Figure 13: 6 prisoners out of 9

We next show that the inequality

ρ1/2(grid) ≤ 2/3 (5)

must hold true. As before, we associate a binary matrix X = (xij) defined by

xij =

{

1, if a prisoner lies in the (i, j) position;
0, if a guard lies in the (i, j) position.

The problem in the toroidal case is described by

2xij + x∗
ij ≤ 4, 1 ≤ i, j ≤ n,

where x∗
ij is the number of prisoners lying in squares adjacent to the (i, j) square. If we add

the above inequalities we get

2
∑

i,j

xij + 4
∑

i,j

xij ≤ 4n2,

which gives Pgrid torus(n) ≤ 2
3
n2. Hence, we must have

Proposition 15.

ρ1/2(grid) =
2

3
.

We calculated some of the values of the sequences {Pgrid(n)}, {Pgrid cylinder(n)}, and
{Pgrid torus(n)} using LPSolve IDE. These values are listed in the table below. One may try
to use our techniques from previous sections in order to prove that the numbers listed below
are valid:

n 1 2 3 4 5 6 7 8 9 10 11 12
Pgrid(n) 1 2 5 9 14 20 28 37 47

Pgrid cylinder(n) 0 2 5 8 14 20 28 37 48
Pgrid torus(n) 0 2 6 9 15 24 30 40 54 63 77 96

Some arrangements that give the maximum number of prisoners in the usual grid graph
for the half-dependent problem are included in Figure 14.
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Figure 14: Best half-dependent arrangements for Gn, n = 2 . . . 9

6 Other Results, Conjectures and Open Questions

We believe that the method of finding an upper bound we implemented in Section 4, can be
further sharpened. However, we have not found a complete analysis to show that for instance
∆ ≥ −O(n) which, we think, would be the sharpest result for this type of domination
problem. If this is true, the first approximation for P (n) will be P (n) = 3n2

5
+ O(n).

There is another interesting phenomenon here that we would like to mention. The boundary
conditions are in a sense less restrictive than the constraints in the center of the board.
As a result it is expected to have quite a good proportion of prisoners on the boundary
in a maximum configuration. In support of this we present two examples we found that
give “best” (so far) arrangements/proportions in the cases n = 15 (Figure 15) and n = 21
(Figure 16). It seems to be possible to construct a sequence of arrangements for which

lim inf
n→∞

P (n) − 3n2

5

n
> 0.

Ionascu, Pritikin, and Wright have established values of P (n) for n ∈ {7, 8, 9, 10, 11} [7].
Most of their arrangements were obtained using the LPSolve IDE program in the Lesser GNU
public domain for solving integer linear programming problems with Branch-and-Bound and
Simplex Methods. The second author used CPLEX while visiting at the Georgia Institute
of Technology in the Faculty Development Program in 2005-2006; with the help of Professor
William Cook he analyzed the case n = 11.

Many interesting questions remain to be answered. What are the values of P (n) for inte-
gers n larger than 11? With error-free play, does one particular player enjoy an advantage?
Perhaps the advantage varies with the board size.

If P (n) is odd, we conjecture that the game favors the red player, but it is not clear
that a winning strategy exists. When P (n) is even, we suspect that error-free play by both
players will lead to a tie.

Given that we find several maximal 4 × 4 board configurations with eight prisoners (an
even number), it seems that the second player (blue) will find opportunities to win unless
s/he is forced to use Rule I. The question is: can the red player always achieve a win or a
tie? We believe there is a strategy for the red player to win despite all of these chances for
the blue player. In general, it appears that the final maximal configuration is an important
factor in the game, since the number of prisoners in it determines the fate of the game. So
it is in the red player’s interest to end in a maximal arrangement with an odd number of
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Figure 15: 136 prisoners, 3
5
(152) = 135

Figure 16: 266 prisoners, 3
5
(212) = 264.6

prisoners on the board. Similarly it is part of the blue player’s strategy to divert the end
configuration to a maximal one that has an even number of prisoners. Each player may
change the configuration at only one place at which the opponent has previously placed his
two prisoners and leave one of them as it is. As a result, almost half the prisoners on the final
board configuration are where each player wanted them to be. So from this perspective the
end game is dictated by the parity and the number of maximal configurations with P (n)−1,
P (n) − 2, ... prisoners.

In this paper, we have shown that P (n) is bounded above by
7n2 + 4n

11
, but we conjecture

that P (n) = 3n2/5 + O(n). Computer assisted methods as employed in [7] show that this
bound can be improved and that our conjecture is very plausible. It would be great to see
a case analysis proof similar to those used here of our conjecture.
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Figure 17: 777 prisoners, 3
5
(362) = 777.6

time, even for large size boards, and is producing arrangements that we think are “very
close” to maximum arrangements. We include in Figure 17 one of them as a curiosity in the
case 36 × 36 (containing 777 prisoners).
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