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Abstract

A semigroup of transfonnations of an infinite set X is called ^'x-normal if S is invariant under conjuga-
tions by permutations of X. In this paper we describe injective endomorphisms of & x -normal semigroups
of total one-to-one transformations / such that the range of / has a finite non-empty complement in X.
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Let X be an infinite set and &x be the symmetric group on X. A semigroup S of
transformations of X is said to be tfx-normal if for every h e &x, hSh~x c S. For a
transformation/ of X the defect off, def / = \X-R(f)\, where R(f) = / (X) is the
range of / , and the shift of / , shift/ = \S(f)\, where S(f) = {x e X : f{x) ^ x).
Let Vx denote the semigroup of all one-to-one total transformations of X with finite
non-zero defects. Note that Vx is a ^x-normal semigroup, and if / is in Yx then
shift/ is always infinite (Lemma 2.2(iv)). Given an infinite cardinal a and a positive
integer n, let S(X, a, n) = [f e fx '• shift / < a, def / = «}. It was proven in [4,
Proposition 2.16] that if 5 is a Sf x-normal subsemigroup of Vx then for each / e S,
and every integer k > 8, S contains S(X, shift / , k def / ) . We say that a £fx-normal
S is closed if whenever / e S, then 5 also contains S(X, shift/, def/) . It follows
that a given Sf ̂ -normal subsemigroup S of yx there exist closed subsemigroups
H, K of f \ which are correspondingly the largest and the smallest with repect to the
property H c S c K. We denote these semigroups by 5min and 5max respectively, so
that 5min c S c 5max. Note that a semigroup is closed if and only if Smax = S = Smin.
For example, Vx and the semigroup of all one-to-one transformations with even
non-zero defects are closed (Lemma 2.2(v)). If a semigroup 5 is not closed, then
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the sets S \ 5max and 5min \ S are relatively 'small', as demonstrated in the remainder
of this paragraph. Let a-def 5 = {def / : / e S], CT-shift S = {shift/ : / e 5}.
Observe that a -def S \ a-def 5max = cr-def Smin \ a-def S, and the difference is finite.
Moreover, cr-shiftSmax ^ a-shiftS = cr-shiftSmin. Also if \X\ e cr-shift S then there
is at most a finite number of integers k such that for some cardinal a,

(1) S(X, a,k)HS^ S(X, a, k) = S(X, a, k) n 5U.-

If |X| ^ a-shift S then for all but a finite number of integers k for which (1) holds we
have that S(X, a, £) n S 2 S(X, £, *) = S(X, a, k) D S^, where /? < a.

This paper is concerned with a description of injective endomorphisms of a closed
^-normal subsemigroup 5 of Vx (Theorem 1.1). There are a number of ingredients
that are involved in our description. Generally, an injective endomorphism 0 of S
determines a partition of X into sets W and U such that for an / in 5, the behaviour
of </>(/) on W is determined by a finite set of one-to-one functions hit i = 1,...,«,
from X to W (Theorem 1.1 (iii)), while (f>{f)\u is governed by a homomorphism
£ : 5 —>• Ty U tfy. We also present a (more complicated) result describing injective
endomorphisms of an arbitrary <$x -normal semigroup of one-to-one transformations
with finite non-zero defects (Proposition 1.4).

We note that our description of injective endomorphisms relates to Magill's de-
scription of a-monomorphisms of a-semigroups in [6]. A semigroup S of total
transformations of X is an a-semigroup if S contains the identity transformation of X,
and all the constant transformations of X that map every point of X onto a single fixed
point in X. A monomorphism <p from a semigroup 5 into a semigroup T is called an
a-monomorphism if 0(5) is a semigroup with identity e such that if ez = z for any
left zero z of T then z is in </>(5).

It was shown in [6] that a mapping 0 from an a-semigroup 5 of transformations of
X into an a-semigroup T of transformations of Y is an a-monomorphism if and only if
there exist functions h : X ->• Y and k : Y -»• X such that &/z = /* and 0 ( / ) = /*/&,
for all / in S. A generalization of the above result to transitive semigroups of (possibly
partial) transformations that for every x € X contain a constant idempotent with range
{x} is given in [7].

We denote the semigroup of all injective endomorphisms of S by lend 5. We note
that if 5 is ^x -normal then lend 5 contains an isomorphic copy of &x- Indeed, in this
case every automorphism of S is inner [3] and so the group of all automorphisms of
S is isomorphic to &x-

1. Main Theorem

Let S be a ^x -normal subsemigroup of Vx, the semigroup of all total one-to-one
transformations of X with finite non-zero defects. We start by introducing the notation
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necessary for stating our main theorem.
For / and g in 5, let D(f, g) = {x e X : f(x) ^ g(x)}. Let AKo be a relation on

5 such that (/, g) e A«o if and only if \D{f, g)\ < Ko. Then AXo is a congruence.
Indeed Lemma 2.7 implies that A ^ is compatible. To show that A«o is transitive,
take (f,g), (g,t) e A*o. Then D(f,t) c D(f,g) U D(g,t), so \D(f,t)\ <
\D(f, g)\ + \D(g, t)\ < A«o. Let S/Ai<0 = {Va : a e A}, where A is an index set.
The binary operation on the quotient semigroup S/ AKo induces a binary operation on A
such that for a, $ e A, afi = y if VaV0 c Vy, where y e A and Vtt, Vp, VY e 5/AKo.
With the semigroup 5 we associate a partial function X from a-def 5 to the set of all
infinite cardinals that do not exceed |X| such that for n e a-def S,

(2) k(n) = {a:S^S(X,a,n)}.

Now we are ready to present the main theorem of this paper that describes injective
endomorphisms of an arbitrary closed yx -normal subsemigroup S c fx.

THEOREM 1.1. Let <j> be an injective endomorphism of a closed semigroup S. There

exist

(i) a subset W of X with \W\ = \X\;

(ii) a partition {X, : i = l,...,n}ofW such that |X, | — \X\, for each i =

1 , . . . ,n,n e N;
(iii) a set ofbijections h,: : X ->• X,, i = 1 , . . . , n;
(iv) an integer r > n such that def<p(f) = r( def f),for each f e S;
(v) a homomorphism % : S —*• ^v U f 'Ur where U = X — W such that

(a) the congruence #(£) induced by £ contains A«o,
(b) shift / + shift f ( / ) e A(r (def / ) ) ;

(vi) a homomorphism r : A -> ^ n such that if r(a) ^ l(i,...,ni then \X\ e
k(r(def g)) for each g e Va;

and for f € Va,x e X,

i.wio/'ij'W ifx e Xt,

Conversely given (i)-{vi), r/i^ mapping defined in (3) w an injective endomorphism
ofS.

COROLLARY 1.2. Let S be a closed semigroup in which every element has shift
less than \X\. Given an injective endomorphism </> of S, there exist (i)-(v) (as in
Theorem 1.1) such that for f e Va, x e X,

(3') <£ (/)(*) = ( *!'/*' \(jc) li
[ S\j)(x) lJ

ifx g U.
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Conversely, given (i)-(v) the mapping defined in (3') is an injective endomorphism
ofS.

The next result provides us with additional information on homomorphism £.

PROPOSITION 1.3. Let £ be the homomorphism from S to ^v U Vv associated
with <p.

(i) Either £(S) c <gv or f (S) c Vv.
(ii) If there exist f g in S with def / / def g and$(f) = £(g) tf*e« £(S) c <SV.

We deduce Theorem 1.1 from the following result describing injective endomorph-
isms of an arbitrary Sf ̂ -normal subsemigroup 5 of fx- We note that the restrictions
(6) and (7) imposed in the 'converse' part of the theorem are intrinsically related to
the structure of a Sf*-normal subsemigroup S of Yx- Namely, if it is known that 5
contains / with shift / = a and def / = m, then

(4) S 2 S(X, a, km) for every k > 8.

However, little can be said about S n S(X, a, km) for 1 < k < 8 (see [4, p. 72-75]).

PROPOSITION 1.4. Let(p e lend S. There exist

(i) a subset W ofX with \W\ = \X\;

(ii) a partition {Xt : / = 1, . . . ,n} of W such that \X(\ = \X\, for each i =

1,...,«, n e N;
(iii) a set ofbijections h,• : X -»• X,, / = 1 , . . . , n;
(iv) an integer r > n such that def <p(f) = r def f ,for each f e 5;
(v) a homomorphism § : S —>• Ty U ̂ Ur where U = X — W such that the

congruence #(£) on S induced by ij contains A«o,
(vi) a homomorphism x : A -> ^ n ^MC/J r/zar //" r ( a ) ^ l{i,...,«j

5 n S(X, \X\, r def g) ^ 0,/«?r eac/z g e Va;

and for f e Va,x G X,

ifx e U.

Conversely, given (i)—(v) iwc/i that for every / € 5

(6) shift / + shift£(/) e A(r def / ) ,

where A. « ai defined in (2), and if for a e A, r(a) ^ l(i,...,„)

(7) |X|eA.(r(defg)),

where g € Va, the mapping defined in (5) is an injective endomorphism of S.
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2. Definitions and Proofs

The foregoing discussion and the results of this section up to Proposition 2.9 are
true for an arbitrary <£x -normal semigroup 5 of total one-to-one transformations
with non-zero defects. The following notion introduced by the author in [3] plays a
very important role in our description of injective endomorphisms of 5. Let T be a
subsemigroup of 5. For x e X, let

£ P ( J C , T) = {r eT :x e X \ R(r)}.

For/, g e 7\let

# ( / . g,T) = {reT:fr = gr}.

If !%(x, T) and &(f, g, T) are non-empty they are right ideals of T termed point
right ideal and function right ideal respectively. For briefness we denote &(x, S) and
J?(/, g, S) by 3f\x) and @(f, g) respectively. It was shown in [3, Corollary 2.10]
that &(f, g) is a maximal function right ideal of S if and only if <%(f, g) = @.{x),
where {x} = D(f, g). This characterization of maximal function right ideals J?(/, g)
as 2%(x) depends on S being ^-normal. We show that an injective endomorphism 4>
of S maps a maximal function right ideal of 5 onto a maximal function right ideal of
<p(S) and the latter can be described in terms of certain point right ideals of </>(S) that
are associated with subsets of Mx of X denned after Proposition 2.9.

A semigroup T of transformations of X is said to be doubly transitive if for all pairs
x, y and u, v of distinct elements in X, there exists an / in T such that f(x) = y,
/(«) = v.

LEMMA 2.1. (i) Let g e S with shift g = a, defg = fi. For every integer
k>8,S contains S(X, a, kfi);

(ii) 5 is doubly transitive;
(iii) let u,v,w be distinct points in X, then there exists r e 5 such that r{u) = v,

w € X - R(r);
(iv) for all f e S, shift / is infinite;
(v) for all f,geS, def fg - def / + def g.

PROOF, (i) This assertion was proved in [4, Theorem 2.7 and Proposition 2.16],
and is stated here for future reference.

(ii) Take pairs x, y and w, v of distinct elements in X. Observe that there exist
cardinals a, y such that 5 contains S(X, a, y), the set of all total one-to-one trans-
formations t of X having shift? < a and def t — y. Let Y — X \ {x, y, u, v),
s e S(Y, a, y), h = (x, y), p = (u, v) be transpositions interchanging x and y, and
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u and v. Let

f(a) =
s(a), if a e Y,
h{a), ifae{x,y],
p(a), ifa<={u,v}.

Then f(x) = y, f(u) — v, as required.
(iii) Assume that w e R{f), where / is as constructed as above. If def / > 1,

choose z e X \ R(f), z ^ u, and let q = (w, z), r = qfq'1. If def/ = y — 1,
then 5 = f 'x, and the result is clear.

(iv) Let x e X \ /?(/). Then 5( / ) 2 {/"(x) : n = 0, 1, 2, . . .} , indeed, if for
some non-negative integer k, f(fk(x)) = fk{x), then fk(f(x)) = fk(x), and since
/ is one-to-one, we have that x = f(x) e /?(/), a contradiction.

(v) Observe that X\R(fg) = (X\R(f))Uf(X\R(g))so def fg = \X\R(fg)\ =
\X \ R(f)\ + \f(X \ R(g))\ = def / + def g.

LEMMA 2.2. Let f,geS with (/, g) e A«o. Then

(0 @{f,g)^®;

(ii) /or every x e X \ D(f, g) there exists an r e @(f, g) with x e R(r);
(iii) for every x e X there exists t e S such that x e R(t) and (/, t) e A«o.

PROOF, (i) Let D = D(f, g). Then D is a finite set, and by Lemma 2.1 (i) there exist
cardinals a, y such that y > \D\ and 5 2 S(X, a, y). Then for any s e S(X, a, y) c
S with R(s) c X \ £>, we have that 5 e R(f, g).

(ii) Given x € X \ D(f, g), choose r e S(X, a, y) as above having x e
R(r), R(r) QX\D.

(iii) Fix an x e X, and assume that x $ R(f)- Choose a y e R(f), and let
h = (x, y) be a transposition interchanging x and y. Let f = hfh~l e S. Then
£>(/, t) c {x, y, / " ' ( y ) } so £>(/, 0 is finite, and (/, 0 e A*.

The next proposition connects point right ideals and function right ideals of a
subsemigroup T of S. It is an easy generalization of [3, Result 2.7].

PROPOSITION 2.3. Let f,geT with &(f, g, T) =£ 0. Then

<%{f, g, T) = D{&(x, T):xe D(f, g)}.

PROPOSITION 2.4. (i) 3?{x, T) = 3?{x) n T for every x n X;

(ii) J ? ( / , g, T) = <%(f g) n Tfor every f,geT.

Fix an injective endomorphism (j> of 5.

PROPOSITION 2.5. Let f,g e 5 wM ^ ( / , ^) ^ 0.
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(i) 0 W , g)) = £(4>(f), <f>(g), 0(5));
(ii) &(f, g) is a maximal function right ideal of S if and only if

&(4>(f), <P(g), 0(5)) is a maximal function right ideal of<t>(S).

PROOF, (i)

= [<t>(r) e 0(5) : 0(/)0(r) = 0(g)0(r)}

(ii) 3&(f, g) is a maximal function right ideal if and only if for all p, q e 5,
> 8) ^ ^(p, <7) implies 3?(f,g) = 3&{p,q), and this statement is preserved

under injective endomorphisms.

Let/ ,g e 5 with £>(/,#) = {*}, for some* e X. Then ̂ ( / , g) is a maximal func-
tion right ideal of 5 and so the above proposition ensures that J?(0(/) , 4>(g), 0(5))
is a maximal function right ideal of 0(5). Moreover, by Proposition 2.3 with 7 = 5,

, g)) = ^ ( 0 ( / ) , 0(g), 0(5))

, 0(S)) : y e

by Proposition 2.3 again with T = 0(5). We show that this determines a function
x —> D(0(/) , 0(g)), that does not depend on the choice of / and g. We start with
the following lemma.

LEMMA 2.6. Given distinct f, g and p in S with D(f, g) — {x} = D(g, p), there
exist s and t in S such that sf = tp and sg — tg.

PROOF. Observe firstly that £>(/, p) = {x}, for / ^ p and if v ^ x then f(v) =
g(v) = p(v). Let f(x) = y, g(x) = z, p(x) = u. Since £»(/, g) = {x} = D{g, p),
y, 2 and u are distinct.

Choose 5 in 5 with s(u) = u and y & R(s). To ensure the existence of such
an s, choose distinct v,x e X \ {u,y} and q e 5 with q(v) — u, q(x) = y
(by Lemma 2.1(ii)). By Lemma 2.1(iii), choose r € 5 with R(r) c X \ {x},
r(u) = v, and let s = qr. Let h = (u, y), where (M, y) denotes the transposition
interchanging u and y. Let t = fcs/r1. We show that s and ? are the required
mappings. Firstly, it is easy to check that D(s, t) = {«, y}. Now, if w ^ x, then
f(w) = p(w) # p(x) = u, and f{w) # y = / (x) , so /(iu) e X \ D(5, ?) and
5/(10) = r/(io) = tp(w). Also 5/U) = 5(y) = hs(y), for j(y) 9̂  u = s(u)
and y ^ /?(s) and /is(y) = hsh~l(u) = t{u) = tp(x). Thus, sf = tp. To show
that sg = ?g it is sufficient to show that u, y g R(g). Now, if w ^ x, then
g(w) = p(io) # « = p(x), and g(io) = /(10) ^ f(x) = y. Also,
as required.
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LEMMA 2.7. If f, g and I are one-to-one transformations, then
(i) D(lf,lg) = D(f,g);
(ii) D(f, g) n R(l) = /(£>(//, g/)).

A semigroup 5 is called right reversible [1, p. 34] if any two principle left ideals
of 5 have a non-empty intersection: Sf C\ Sg ^ 0, for all / , g e 5.

PROPOSITION 2.8. A &x -normal semigroup of total one-to-one transformations is
right reversible.

PROOF. Let f, g e S and /x = max{ shift / , shiftg}. We can assume that def/ =
def g (else replace / and g with fg and gf respectively and note that def fg =
def / + def g = def gf, by Lemma 2.1(v)). By Lemma 2.1(i) there exists a non-zero
cardinal a such that S 2 S(X, /x, a). Choose p e S(X, /x, a). Construct a one-to-one
mapping q satisfying pf = qg as follows. Let ̂  be a bijection from /?(g) onto R(pf)
defined by tfi(g(.x)) = pf(x), for all JC e X. Note that def pf = def p + def/,
so \X \ R(pf)\ > def/ = def g, and partition X \ R(pf) into disjoint sets A and
S with \A\ = defg. Let <?2 be a bijection from X \ R(g) onto A, and let q be a
transformation of X such that

qi(x), if x e
q2(x), ifxeX\R(g).

Then def q = \B\ = def pf - defg = def p + def / - def/ = def p. Also

shift? <\{x eX : g(x) ^ pf(x)}\ + defg < shiftg + shift pf + defg < /x,

since shiftg, shift/7, and shift/ are at most /x, and defg < shiftg < /x (for any
x e X\ R(g), g(x) ^ x). Thus q e S(X, /x, a) c S.

PROPOSITION 2.9. Ler f,g,p,q e 5 vwA D(f,g) = {x} = D(p,q). Then

PROOF. Assume firstly that q = g. By Lemma 2.6. there exist t,s € S with
sf = tp and sg = tg. Thus

D(<Kf), 4>(g)) = D(4>(s)<t>(f), 4>(s)4>(g)), by Lemma 2.7

Now assume that q / g. Since 5 is right reversible (Proposition 2.8), there exist
k,l e S such that Icf = Ip. Now, D(/, g) = £>(£/, jfcg) = D(lp, kg), D(p, q) \
D(lp, Iq), and the result follows from the previous argument and the fact that the
above equalities are preserved under injective endomorphisms.
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N o t e tha t for e a c h x e X, t%(x) ^ 0 ( L e m m a 2 .1 ( i i i ) ) , a n d t h e r e e x i s t f , g e S
w i t h D(f, g) = {x} [ 3 , R e s u l t 2 . 8 ] . G i v e n x e X de f ine

where f,g&S with D(f, g) — {x}. The above result ensures that Mx does not
depend on the choice of / and g (as long as D{f, g) = {x}).

Starting from now assume that 5 is a &x -normal semigroup of total one-to-one
transformations with finite non-zero defects.

PROPOSITION 2.10. (i) <f>(&(x)) = <~){&(y, </>(S)) : y e Mx};
(ii) Mx is finite for every x e X;

(iii) \MX\ = \My\forallx, y e X;
(iv) MXC\ My = id for all distinct x,y e X;
(v) f(x) = y if and only if4>{f){Mx) = My.

PROOF. Statement (i) follows from Proposition 2.3 and the definition of Mx. Sets
Mx are finite because of (i) and an observation that 0(S) consists of transformations
with finite defects. To show (iii) let x, y e X and choose f,t,s e S such that
f(x) = y, Dit,s) = {v} [3, Result 2.8]. Then £>(?/, s / ) = {x} and by Lemma 2.7(ii)

4>(f)(Mx) = </>(/)(£>(<MO0(/), 4>(s)<Kf)))

(8) = Di<pit), <t>(s)) n /?(</>(/)) = My n /?(</>(/)).

Since 0 ( / ) is one-to-one, \MX\ < \My\. Because of arbitrariness of our choice of
f,t,s we conclude that \MX\ = \My\. Note that this together with (ii) and (8) proves
the 'only i f part of v), so that now

(9) fix) = y implies <Kf)(Mx) = My.

To show (iv) take distinct x, y e X and assume z € Mx n My. Choose g € &(y)
with giv) = x, for some v e X. Then <pig)iMv) = Mx B z, by (9), while (i) implies
that My c. X \ Ri<pig)), a contradiction, since z e My.

Finally, assume <^(/)(Mx) = My, while fix) = z, for some z e X. Then by (9),
<j>if)iMx) = Mz and by iv) z = y.

Let W = U{M, : x e X], U = X \ W. Note that U can be empty.

COROLLARY 2.11. Given (j> e lend S there exists a partition of X into sets U
and W such that W is a disjoint union of sets Mx, x e X, and for every F e S,
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PROOF. Proposition 2.10(v) implies that 4>(f)(W) c W. Also, if u e U and
<p(f)(u) — v e W, then there exists y e X such that v e My. If y G /?(/),
say f(x) = y, then <j>{f){Mx) = My (Proposition 2.10(v)), and since <p(f) is one-
to-one, u e Mx c W, a contradiction. Assume y ^ /?(/), so / e !%{y), then
</>(/) e n{^?(z, 0(5)) : z e A^} (Proposition 2.10(i)), that is /?(</>(/)) c X \ Afy, a
contradiction since v e R(<j>(f)) F\ My.

It follows from the above result that $ induces a homomorphism f : S
given by £( / ) = $(/)|t/- The next Lemma shows that the natural congruence
on 5 induced by f contains A^o.

LEMMA 2.12. Let (/, g) e A«o. Then

(i) </>(/)k = <t>{g)\Mjor allx € X \ D(f, g);
(ii)

PROOF, (i) By Lemma 2.2, if x e X \ £)(/, ^), we can choose 5 e J?(/, g) with
s(y) = JC, for some y e X . Then <p(s)(My) = Mx and

(ii) Define a relation A on 5 such that (/, g) e A. if and only if there exist
pu...,pn e S such that px = / , pn = g and |£)(/?,, pi+1)\ < 1, / = 1 , . . . , n - 1.
Clearly A is an equivalence. Moreover, Lemma 2.7 implies that A is a congruence.

Now, let (/, g) e A, /? i , . . . , pn be as above and u e U. Then for / = 1, . . . , « —
1, <p(pj)(u) = 4>{pi+\)(u) (by the definition of A//s and W), so that <j){f){u) =
4>{P\)(U) = • •• = 4>(pn)(u) = (p(g)(u). Hence we have shown that

(10) (/, g)eX implies <Kf)\v = <p{g)\v.

Assume finally that (/, g) € AK0. Then def / = defg = n, say. Let a =
max(shift/, shift g), and recall that 5 contains S(X, a, kn), for alU > 8 (Lemma 2.1).
Let T = U{S(X,a,kn) : k > 8}. Then A^\TxT c A| r x r . Indeed, let (s,t) e
(T x T) fl AK0. It was shown in [5, Lemma 8] that there exist one-to-one total
transformations sx = s,s2,...,sm = t such that \D(shsi+l)\ = 1, for all / =
1, . . . , m — \. Butthen def 5, = def 5 and shifts, = shifts,for all/ = 1, 2 , . . . , m,so
that Si e T. Therefore (s, t) e A. Now choose q e T with shifty = a, defq = 8«,
and note that (qf,qg) € AKo| rx r . Hence {qf,qg) € A so that (p(q)<t>(f)(u) =
<P(q)<P(g)(u) by (10). But this implies </>(/)(M) = <j){g){u), as required.

Next we show that every homomorphism from S to Vy, A«o < \Y\ < \X\, preserves
the natural order relationship between the defects of transformations in S. This will
enable us to describe def <£(/) for / e S.
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LEMMA 2.13. Let £' : 5 -*• YY be a homomorphism f,g e S. Then,

(i) def / > defg implies deff'(/) > def t-'(g), and def = def g implies
def £'(/) = def | '(g),

(ii) def (/>(/) = r def f, for a fixed integer r > \MX\.

PROOF. Our proof goes via the following four steps.

Step 1. def / > def g if and only if there exist m eH,t e S with fm — tgm.
Note that it suffices to show that def / > def g implies the right hand side of the

above equivalence. Let shift/ = a, shiftg = p, and

8(def/) ,
m ' 8(defg), ifa < p.

Observe that if p, q e S with def p > defq then \D(p, q)\ is infinite and a one-to-
one t can be constructed so that p = tq, deft = def p— def g and shift? = \D(p,q)\
which is at most max{ shift p, shift*?}, since D{p, q) c S(p) U S(q). In particular,
there exists a one-to-one mapping t with fm = tgm, shift? < max{a, /?}, and

deft= def/m\ defgm = I 8(def/)(def / - def g), if a > p,
8(def/)(def / - defg), ifa < p.

If a > p, then shiftf < a, deft = 8(def/)(def/ - defg) and so t e 5 by
Lemma 2.1(i). Similarly, t € S if a < p.

Step 2. def/ > def g implies def£'(/) > def t-'(g).
Follows from Step 1 and the fact that the equality £'(/)m = %'(t)%'(g)m, m > 1,

implies that def £'(/) > deff (g) since §'(/), r(O,f ' (*) e r r .
Step 3. def / = def g if and only if

(11) for all k, I € N, / > 9, there exist s,t e S satisfying

sf = gk+l, tgk = /*+', defs < def/'+1, def? < defg'+1.

Let def/ = def g = a. For all positive integers k, I, I > 9, there exist one-to-
one transformations s, t satisfying the two equations in (11). Then shifts, shift? <
max{ shift/, shift g}. Also, by Lemma 2.1, def s = def gk+l \ def/* = (k + l)a -
ka = la < la + a = def//+1. Similarly, def? = la < def g'+1. By Lemma 2.1 (i),
s, t e S.

For the converse we show that (11) implies def / = def g in any subsemigroup S
of t x . Let def/ = a, def g = b, def s = c, deft = d. Then (11) implies that

(12) ak + c = (k + l)b\

(13) bk + d = (k + l)a;

(14) c < (I + \)a\

(15) d < (I + \)b.
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We show that (12H15) imply a - ft. Let k +1 = n, then n > 1 + 9 = 10. Note that
(12) and (14) together imply that

(16) (n + \)a > nb

while (13) and (15) imply

(17) (« + \)b > na.

It is easy to verify that if a and b satisfy (16) and (17) with n > 10, then a = b.

Step 4. def / = defg implies def£ ' ( / ) = def£'(g)-
This result follows from Steps 2 and 3 (recall that the proof of '(11) implies

def / = def g ' in Step 3 is given for an arbitrary semigroup of total one-to-one
transformations with finite defects).

Observe that Steps \-A above are applicable to 0, a particular homomorphism from
S into f x- Therefore, we may define a mapping rj : cr-def S —>• a -def S such that for
a € a-def 5, / e Swith def / = a,r)(a) = def <£(/). It follows from Corollary 2.11
that def ( 0 ( / ) ) = |W \ R(<Kf)\w)\ + \U \ R(<p(f)\u)\- By Proposition 2.10, Hi),
iv), v), \W - R(4>(f)\w)\ =n def/ , wheren = \MX\, for some x e X. Recall that 0
induces a homomorphism f : S -> "Ĵ y U &u (the remark following Corollary 2.11)
given by f ( / ) = 0 ( / ) | j , and |£/ - i ? ( | ( / ) ) | = »j(def / ) \ « def / . Therefore §
induces a mapping from a-def S to N U {0} such that def / i-»- def | ( / ) , for / e S.
Let <7-def 5 = (mj, m2,..., »Jt), where w, < m,-+i, and mi, m 2 , . . . ,mk is a minimal
set of generators of a-def S (see [4]).

Step 5. r)(a) = (r){mx)/m\)a, for ana e a-def 5.
Observe that r] is a homomorphism since for a, ft e a-def 5 and f,geS such

that def / = a, def g = ft we have that r?(a + ft) = def <?(/?) = def (<p(f)<p(g)) =
d e f W ) + def p(g) - i?(a) + i/(&).

Now given a e cr-def 5, ctriim^ = »j(ami) = mifj(a), since rj is a homo-
morphism. Thus 77(<z) = (r](mi)/mi)a. Let r = r){m{)/mu we show that r
is an integer. Let c? = gcd(mum2,. • • ,mk), and observe that there exists an
integer t such that cr-def 5 contains all integers s > t divisible by d [4, The-
orem 2.17]. Choose a e a-def S with a > t and a = bd, gcd(b,m\) = 1. Then
rj(a) — ra — (r){rri\) I m\)a(r)(rn{) I m{)bd = {bdrj(mi))/mx. Since r)(a) e cr-def 5,
rj{a) is divisible by d, so {brj{m\)/m\ is an integer. Therefore r = r)(m^)/m\ is an
integer (since gcd(b, mi) = 1). Next we shall define the partition {X, : i = 1,... ,n]
of W (Theorem 1.1 (ii) and Propositon 1.4(ii). We need the following preliminaries.

LEMMA 2.14. For every a e A and distinct x, y e X, there exists f e Va such
that f(x) = y. If a is such that va contains a transformation g with g(u) — u for
some u € X then for every x e X there exists p e Vafor which p(x) = x.
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PROOF. For each t e Va, S(t) is infinite and so there exist distinct a, b e X\{x, y]
such that t(a) — b. Let / = (a, x)(b, y)t(a, x)(b, y). Note that if z ^ a, b, x, y and
t(z) ^ a, b, x, y then /(z) = t (z) and hence / € Va, f(x) = y. To prove the second
statement let g e Va with g(u) — u. Then p = g if x = u, and p = (x, u)g(x, u)
otherwise, is the required transformation.

We call a Ax0 -class Va containing a transformation with a fixed point an f-set.

LEMMA 2.15. Let a, f} e A. Then Vap is an f-set.

PROOF. By the first part of Lemma 2.14, we can choose / e Va, g e Vp such that
for some distinct u, v € X, f(u) = v, g(v) — u. Then fg(v) = v, fg e VaP.

LEMMA 2.16. Let a e A. Then

(i) for all / , g € Va, def / = def g and shift/ = shift g;
(ii) iff € Va wi^ def/ = w, tfien {/?(g) : g e Va] = [B c X : |X \ B\ = m).

PROOF. While (i) follows easily from the definition of A«o, to show (ii) let /?(/) =
A and B c X with |X \ B\ = m. Choose a permutation h of X such that /i(X \ A) =
X \ B, h(X \ B) = X \ A and h is the identity of A n B. We show that /z/fc-1 e Vo.
Indeed if hfh~l(x) ^ / (x) then either f(x) e A n (X \ B) or / (^ ) e A n B. There
are only finitely many x in the first cases since X \ B is finite and / is one-to-one,
and in the second case fh~l{x) ^ h~lf(x) = f(x), and so h(x) / x. Hence,
since h shifts only a finite number of points we conclude that hfh~l € Va with
R{hfh~l) = h(R(f)) = h(A) = B. Finally, note that the reverse containment
follows from (1).

LEMMA 2.17. Let a and ft be in A. Put n = shift/7 + shifty anda = 8def p +
9def q,for some p e Vaandq e Vp. Then for all x e X,m > 1, there exist S, y e A
such that for any k 6 5(X, /x, ma) n Vs and for an f e Va with fk(x) ^xifVp is
not an f-set, we have fk = gl,for some g € Vp and I e Vy such that l(x) = x.

PROOF. Note that by Lemma 2.16(i), pu = max{ shiftp, shift*? : p e Va, q e Ve]
and either p or q in the definition of a will have shift /x. Hence by Lemma 2.1(i),
5(X, ix, ma) c S and so there is k e S(X, /Lt, ma) such that fk(x) = u with u ^ x
when Vp is not a /-set. Let fk{x) — u and assume that there exists g e Vp with
g(x) = u and R(g) 2 R(fk). Then there exists a one-to-one total transformation
/ such that fk = gl. It then follows that S(l) = D(g, fk) and therefore shift/ =
|5(/)| < n, while def/ = def / + def it - def g = (8m + 1) def f + (9m- 1) def g,
so by Lemma 2.l(i) / e S with l(x) = g~\fk(x)) = g~\u) =x.
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To show the existence of g e Vp as above note that by Lemmas 2.16(i) and 2. l(v) for
any t e Vp, deft = defg > def g + def / = def gl = def fk. By Lemma 2.16(ii)
we may choose t in Vp such that R(t) 2 R(fk). If t(x) = u, let g = t. If
t(x) = v ^ u, x and u ^ x, let g = («, v)t(u, v) (note that R(g) = R(t) since
v = t(x) e /?(0 and u = /£(x) e /?(/£) c R(t)). If f (x) = x and w ̂  x, then
since R(t) is infinite it contains some z ^ u,x such that t(z) = w ^ u,x,z. Let g =
(X,Z)(K, u/)?(x,z)(«,i<;) then £>(g, 0 c {M, w, x, z, rx(u), t~l(w), rx(x), r\z)},
a finite set, and so g e Vp. Finally let v / x while u = x. Then V)j is an /-set,
so that V)j contains a transformation s with a fixed point. Choose a permutation h of
X such that h(X \ R{s)) = X\ R(t), h(X \ R(t)) = X \ R(s) and h is the identity
otherwise. Replace t with hth~l. Then t(y) = y for some y e X, R(t) 2 R(fk).
If y = x let g = t. Otherwise let g = (x, y)t(x, y) (note that R(g) = R(t) since
x = u e R(fk) c R(t)).

Now let Vs and VY be the classes of AHo containing k and / respectively. Then for any
/ ' e Va and k' 6 Va with f'k'(x) ^ x if V̂  is not an /-set, as above we can find g' e
Vp, /' e 5 with l'{x) = x and /'it' = g'V. We show that /' e Vr. Indeed, (/, / ' ) e A*o

and (jf if) e ANo imply (/*, / T ) e A*o, so that (gl, g'l') e A*o or \D(gl, g'l')\ < Ko.
We show that D(l, /') is finite. Indeed, if a e D(l, /') then either gl(a) ^ g'l'(a),
so a e D(gl,g'l'), a finite set, or gl{a) = g'l'(a), and l(a) € D(g,g'), again a
finite set, since g, g' e Vp. Therefore, D(l, /') c D(g/, g'/') U l~\D(g, g')), hence

')l < «o, so (/, /') e A«o and /' e Vy.

Fix an x in X and write A/x = {xi, . . . , xn} (Mx is denned after Proposition 2.9).
For every / e {1,. . . ,«} and a e A let

Y,,a = Mf)(Xi) : f e Va).

Partitions srf and 38 of a set Z are said to be orthogonal if for all A G ^ , B e 38,
\A(~) B\ — 1. A subset C of Z is a transversal of the partition J ^ if for all A e s/,
\CC\A\ = 1.

LEMMA 2.18.

(i) Ifi ^ j then Y,,a n Yj.a = 0.
(ii) IfVa is an f-set then {Yia : i = 1 , . . . , n] forms a partition ofW orthogonal

to {My : y e X}. Otherwise, [Yia : i = 1,...,«} is a partition ofW\Mx

orthogonal to {My : y e X \{x}}.

PROOF, (i) Assume that z e Yia n y,-iO, so that there exist / , g, e Va such that
<p(f)(Xi) = z = <p(f)(xj). Recall that x, e M^ and let / (x) = j , g(x) = a.
Then by Proposition 2.10(v), <p(f)(Mx) = My, ^»(g)(M,) = Ma, and by 2.10(iv),
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z e My D Ma implies y = a. Therefore x & £>(/, g), and so 2.12(i) implies that
<P(f)(Xi) = <p(g)(Xi). Hence, / = j .

(ii) We start by showing that \My n Yia | = 1 for every y e X for which there exist
f eVa with f(x) = y. We have that <pif)iMx) = My so that <?(/)(*<) 6 My n Yi<a,
that is, \M n y,-iO| > 1. Now assume a,b € Myn Yia, then there exist f, s, e Va with
(?(/)(*,) = a,<pis)ixj) = bandsotix) = y = six). Hencea = band\MyC\Yia\ = 1.

For every y e X such that there exists / € Va with / (*) = y, My c U{F,,a : / =
1,.. . ,«}. This follows from (i) and the above. This and Lemma 2.14 together with an
observation that if Va does not contain mappings with fixed points then Mx n Y,,a = 0,
for every i completes the proof.

Our aim now is to associate with every a e A a partition 36'a of W orthogonal
to [My : y 6 X}. If a is such that Va contains a mapping with a fixed point let
Xa = {Yia : i = 1, . . . ,«}. Otherwise we use the following construction. Choose
u e X,u ^ x and let Mu = {«] , . . . , un}. Let

LEMMA 2.19. Given i e { 1 , . . . , n] there exists unique j e { 1 , . . . , « } such that
Uita = Yj,a if Va is an f-set and £/,,„ \ Mx = Yja \ Mu otherwise.

PROOF. Choose y e X depending on whether Va is an /-set as follows. If Va is an
/-set let y be an arbitrary element of X. If Va is not an /-set let y be an arbitrary
element of X \ {x}. By Lemma 2.18(ii) applied to £/,-,„ there is z e £/,-,„ n My, with
z = </>(/)(«,), for some / e Va. Then <pif)iMu) = My by Proposition 2.10(v) and
(iv), and so by Proposition 2.10(v), / («) = y. We use Lemma 2.17 with fi = a and
a = 8def / + 9def / = 17def/, and /x = shift/. Choose A: e SiX,fi,a) c S
with Jk(x) = M (Lemma 2.14). Then /&O) = / (u) = y, and if Va is not an /-set we
have y ^ x. By Lemma 2.17 there exist /, g in S with g 6 Va and

z = </>(/)(«/) = <t>if)Hk)ixt), for some r e { l , . . . , n }

, ^ » for some j e { 1 , . . . , «}.

If v is also an element of £/,-,„, v = 0 (/')(«/) and/ ' e Vo, let ̂  be chosen as before, so
thatw, = 0(&)(x,). By Lemma 2.17 again choose/', g' suchthat/'(x) = x, f'k = g'l',
g' eVa. Then

v = </>(/')(«,) = <pif')<t>ik)ix,) = 4>ifk)ix,)
)(*i) = </>(g')(^) e Yj,a,
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since (/, /') € A«o, and so by 2.12, (p(l)(x,) = (p(l')(x,). Therefore we have shown
that £/,-,„ c Yja if Va is an /-set, and {/,,„ \ Mx c Yja, if Va is not an /-set. If
Va is an /-set, y,> and f/,,a are transversals of the partition {My : y e X} of W
(Lemma 2.18(ii)), and so Yjia = Ui<a. If Va is not an / -set Yja is a transversal of
{My : y e X\ {x}}, £/,-,„ is a transversal of {Afy : y € X \ {u}} (Lemma 2.18(ii) again),
so f/, a \ M, and YjiCt \ Mu are transversals of {My : y e X \{u, x}}. Therefore the
inclusion £/,-,„ \My c y ; > implies that {/,-,„ \ M* = y, a \ Afa.

If Va is not an /-set, the above lemma determines a permutation p of {1 , . . . , «}
such that Yi,a \ M„ = f/P(,-),a \ Mx. With every a € A we associate a partition £Va of
W such that

In view of the above lemma this is a natural extension of the definition of 2Ea given
after Lemma 2.18 for these a for which Va is an /-set. Observe that for evey a e A,
the partition 3ta of W is orthogonal to [My : y e X}. Indeed, let z e X \ {x, u],
and note that since YUa and t/P(,)a are transversals of {My : y e X \ [x}} and
{My:yeX\ {u}} respectively (Lemma 2.18), then |F ( > D Mz\ = 1 = |[/p(,),a D Mz|.
Since y( > \MU — UP(iha \ Mx we have that YUa f)Mz = Upii)iCt D M. = {fl}, for some
a € Mz. Therefore

[Yi,a U Up(i),a] DMZ = (Yi,a n A/z) U (Up(iha n M2) = {a} U {a} = {a}

so that \[YitU U f/P(,)a] n M2\ = 1. The next result follows.

LEMMA 2.20. For every a e A, 3£ a is a partition ofW orthogonal to [My : y e X}
that does not depend on the choice of initial point (x) or points {x and v).

We write 3£a = {Xia : / = 1 , . . . , « } , so that Xia = YLa if Va is an /-set, and

Xi.a = Yi.a U UP(i),a otherwise.

LEMMA 2.21. There exists a function a : A x A —y <£n such that for a, /3 e A,

i , y € { 1 , . . . , / ! } , CT(

PROOF. Let a, ft e A, v e XitO n My for some y e X with v ^ x if V̂  is not an
/-set, for which there exists / e Va with f(x) = y. Let £, g, I be as in Lemma 2.17
with k chosen such that k{x) = x. Then x, = 0(£)(;cm) for some m and

) = <P(fk)(xm)

= <P(gl)(xm) = <P(g)<P(l)(xm) = <P(g)(Xj) € X,,^,

for some y e { 1 , . . . , « } . If v' — <p(f')(Xj), f e Va, choose k as above and /', g'
such that (/, / ' ) , (g, g') e AKo, l'{x) = x, / ' / t = g'V (Lemma 2.17 again). Using
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the above argument we can show that v' = <j>(g')4>(l')(xm) = <p{g'){xj) e X;/3.
If Va and Vp are /-sets, then Xia = Yi<a c y,^ = Xjtp, and since X,,a, X7/3 are
transversals of {My : y e X}, we have XUa = Xy>/3. If either Va or Vp are not
/-sets, then X,,a \ Afx = y,,a c Yjtfi. In this case we repeat the argument starting
with u to deduce that Up^a c Uk,p (note the same ft as before). Hence, using 2.19,
UP(i).<* \Mx = Yi,a n t/p(o,« c y,j/3 n t /M. That is XJJ n Xi,^ is non-empty and so, by
2.20, ; = it. Hence X,-,a c Xji0, and the equality follows.

Using Lemma 2.20, for every a e A define bijections

hi,a : X ->• X,,o by y i->- My n X,,a, j = 1 , . . . , n.

LEMMA 2.22. Given f e Va, y € X,,a and p e A i«c/i /Aaf V̂  is an /-se^,

PROOF. Let {>-} = Mz n X,,K = {/i,,a(z)}. Then 0(/)(y) € (/>(/)(Mz) = Mm.
Observe that Lemma 2.14 implies that Vfi contains k with &(jt) = z (in particular if
x = z the required & exists by 2.14 since Vfi is an /-set). Then 0(^)(MX) = M2, so
that <p(k)(Xj) = y, j G { 1 , . . . , n}. Therefore y € X;/i n X,,a, and by Lemma 2.21,
Xi,a = Xk,n for some k £{\,...,n}. But then XJJ n Xtii8 # 0, so X;,^ = Xt>^ = X,,o
by Lemma 2.18(i). Hence Xjifi = Xa^PW),p (Lemma 2.21), so that j = a(a,
and

<Kf)(y) = <Kf)<Kk)(.xj) = 4>(fk)(xj) 6 XM = xa(a,m),ap.

Thus,

4>(f)(y) = Mm n Xa(a<pm,ap = ha(a,pm

LEMMA 2.23. For all a,p,ye A,

(i) o(a,P) = a-l(P,ot);
(ii) a(a,P)=a(y,l3)a(a,y);

(iii) cr(ap, ay) = o(f}, y), for all fi, y for which Vp and Vy are f-sets.

PROOF. (i)X,,a = Xa(a,PW)tp = Xa<JS,a)a(a,pmta,soa(f}, a)o(a, j8)(/) = i for every
i € { l , . . . , n } .

(li) Xia = Xa(af)(i)tp = Xa(p<Y)a(a,p)(j),y ~ •^<T(y,a)<r( ,̂y)(7(a,̂ )(i),a' S 0

a(y,a)a(P, y)a{a, P)(i) = i for every / € {1, . . . ,«}. Hence a(a,p) =
My, a)a(fi, K)]-1 = a~x{fi, y)a-\y, a) = a(y, P)a(a, y), by i).

(iii) By Lemma 2.22, we have 0(/)(y) = haMW),apf hrl
a(y), for f € Va,y e X,,a.

Also, <p(f)(y) = haia,y)(i),aYfh~l
a(y) = ha{aY,aP)aiaiYm,apfh^(y), so that a(a, 0) =

a(ay,aP)o-(a, y), or a (ay, oifi) = a(a, P)a~i(a, y) = a(a, fi)a(y, a) =o(y,P),
by (ii).
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Fix /x e A with Vu being an /-set. Let X ( > = X,, A(> = A,-. Define r : A -»• #„
via a —>• cr(a/x, /v,).

LEMMA 2.24. x is a homomorphism.

PROOF. Let a, ft e A. Then, by Lemma 2.23(iii) and Lemma 2.15, r(a)r(/3) =
cr(ar/z, /z)er(/J^i, fi) — a(a^i, fi)cr(afifi, a/x). Now, using Lemma 2.23(ii),

, a/x) =

LEMMA 2.25. GIVCT v e X,-, / € Va, <Kf)(y) = hTiamfhj\y).

PROOF. Observe that X, = Xi4l = Xa()liaW)<a and by Lemma 2.22 with )3 = /A,

<P(f)(y) = fl
a(a,li)a(M,a)(i),anfha(liaHna(y) = hi<ailfh~latl)a^amil{y)

= ha(alx,m),nfh-^y) = hT(m)fh;\y).

Recall that there exists an integer r > \MX\ such that def </>(/) = rdef / , for
e S(Lemma2.13(ii)).

COROLLARY 2.26. (i) For every i e {1, . . . ,«}, 0(/)(X,) £ XT(m).
(ii) 7/r(a) ^ lu,...,„,, f/ẑ n S n 5(X, |X|, r(def/)) ^ 0 w/zere / 6 Vo.

(iii) If shift / < \X\for all f in S then z(a) is the identity on { 1 , . . . , n}for every
a € A.

PROOF, (i) The statement follows directly from Lemma 2.25 and the fact that the
image of hz(aW) is Xvia)(i).

(ii) Let a g A be such that r(a)(O = j ^ /, for some i, j e { 1 , . . . , n}. Then,
by part i), 0(/)(X,) c Xj Q X \ X,-. Therefore shift4>(f) > \X,\ = |X|. The
result now follows from the fact that def</>(/) = rdef/ (Lemma 2.13(ii)), and
0 ( / ) € S n S ( X , | X | , r d e f / ) .

(iii) This statement is an immediate consequence of (ii).

PROOF OF PROPOSITION 1.4. The set W is defined prior to Corollary 2.11. The
existence of the partition {X, : / = 1,...,«} in (ii) is established in Lemma 2.20.
Bijections hi in (iii) are defined prior to Lemma 2.24, while (iv) and (v) are shown in
Lemmas 2.13 and 2.12 respectively. The homomorphism r in (vi) is established in
Lemma 2.24 and Corollary 2.26(ii). Finally, (5) is proven in Lemma 2.25.

Conversely, assume (i)—(vi) are given and satisfy (6) and (7). Let f € S. Clearly
<p(f) is one-to-one, and if / e Va with r(a) = 1(1 n) then shift0(/) = n shift/ +
shift£(/) = shift/ + shift£(/), and (6) implies that (/>(/) e S. If / e Va with
T(«) ? I), „, then (/>(/) e S by (7).
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To show that 0 is a morphism take / e Va, g e Vp and y e X,-, for a, ji e A,
i 6 ( l «}. Then fg e VafS and

while

<Kf)4>{g)(y) =

since hxmogh;\y) e Xr ( W 0

since T is a homomorphism. To show that $ is one-to-one, let / e Va, g e Vp with
4>(f) = <P(g)- Then for every y e X,, / e { l «}, </>(/)(}>) = hxmnfhrl(y) =
hrmi)gh-](y) = 0(g)(>),sothat/iI(a)(O/(M) = ftr(/,)(0£(w),forevery« e /?r'(X,) =
X. Moreover, r(a)O') = r(b)(i), and so / = g.

PROOF OF THEOREM 1.1. Suppose S is closed. Then Proposition 1.4 gives (i)-
(iv), v(a) and (3) in Theorem 1.1. To show v(b), let / € S, then shift<p(f) >
shift/ + shift§(/), def0(/) = rdef/ , so S 2 S(X, shift</>(/), r(def / ) ) 2
5(X, shift/ + shifty/), r (def / ) ) , and the statement v(b) holds. If g e Va such
that r(a) ^ 1(1 „, then shift<^(g) = |X|, and so 5 2 5(X, \X\,r(defg)), and
(vi) holds. Conversely, given (i)-(vi), the mapping defined in (3) is an injective
endomorphism provided it satisfies (6) and (7) of Proposition 1.4. This follows from
(v) and (vi) of the statement of Theorem 1.1

PROOF OF COROLLARY 1.2. Follows from Corollary 2.26(iii).

PROOF OF PROPOSITION 1.3. (i) Let / e 5 with £( / ) 6 # y and let g e S. We
show that t-(g) e ^v. Let def / = m, def g = 1. Since 91m2 > Im there exists a
one-to-one mapping p such that f9lm = pgm. Then def p = def/9"" - def gm =
91m1 -Im = lm(9m — 1) > 9lm, shift p < max{ shift / , shift g}, and so p € S. But
then Hp)Hg)m = S(f?lm e S^, so that | (g) e Sf„.

(ii) It suffices to show that if / , g e S with def/ ^ def g and £( / ) = t-(g),
then | (5) n &v ^ 0. Assume firstly that there exists t e S such that tf = g. Then
HOUf) = Hg) = ? ( / ) , ?(0 is the identity on the range of £( / ) and since def £( / )
is finite, |(r) e ^(/. Therefore, it suffices to show that there exist / ' , g', t' e S with
def/' ^ defg', t'f = g' and f (/ ') = f (g7). Let def/ = n, def g = m, where
m > n, f = fSnm, g' = g8""1. Let f' be a one-to-one mapping such that t'f = g'.
Then defr' = %nm{m - «), shiftr' < max{shift/', shiftg'}, and so r' € 5, as
required.

We conclude by presenting an example of an injective endomorphism with non-
trivial % and t .
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EXAMPLE. Let S be such that a-def 5 = [2k: k > 1} and S 2 {S(X, \X\, 2k) : k >
2}. Partition X into sets W and U with \W\ = \U\ = \X\. Let n = 2 and partition
W into Xi and X2, \Xi\ = \X2\ = \X\. Choose arbitrary bijections h,• : X -*• Xh

i = 1,2. Choose an infinite cycle hofU and let

£ : S -* ^ be such that / -> /zm, if def/ = 2w.

Let r : A —>• ^ 2 be given by

J l{li2), if def / = 0 (mod 4), / e Vo,
T W 1 (12) otherwise.

Let 0 : S ->• 5 be defined by

hifK\y), if def / = 0 (mod4), v e X,,
hi+lfh~\y), if def / ^ 0 (mod 4), y e Xt,

where / e S and the addition of the indices is done modulo 2.
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