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Abstract. We associate a von Neumann algebra with each pair of complete

wandering vectors for a unitary system. When this algebra is nonatomic,

there is a norm–continuous path of a simple nature connecting the original

pair of wandering vectors. We apply this technique to wavelet theory and

compute the above von Neumann algebra in some special cases. Results

from selection theory and ergodic theory lead to nontrivial examples where

both atomic and nonatomic von Neumann algebras occur.

1. Introduction

We consider a particularly simple type of continuous path of orthonormal
(mother) wavelets that may connect two given wavelets. The general connect-
edness problem for wavelets has been studied by several authors over the past
decade, and there is a literature concerning it. The solution is known to be yes
(i.e. they are path-connected in the L2(IR)-norm) for the special case of the dyadic
MRA (multiresolution analysis) wavelets on IR (by the Wutam Consortium [27]),
and for the case of the MSF-wavelets, or equivalently the wavelet measurable sets
(by Speegle [26]). The general problem for arbitrary orthonormal wavelets re-
mains open. This article is in an essentially different (but related) direction. The
difference is that we focus on a special type of continuous path between wavelets,
rather than consider the existence of generic paths.

The primary motivation for this paper is the development of the mathemat-
ics underlying the subject of wavelet theory in Hilbert space. New connectivity
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results can be used for classification purposes in that two wavelets can be consid-
ered to be related in a particular way if there is a particular type of continuous
path of wavelets connecting them. In addition, new results for continuous paths of
wavelets have potential use in development of perturbation techniques for wavelet
analysis. We were led to this paper by an attempt to gain a better understanding
of the known positive results in [27] and [26] mentioned above, and its relationship
with our work in [2] and [15]. We discovered that certain (but not all) pairs of
wavelets can be connected by a direct path (see definition below) analogous to
the manner in which two measurable sets of the same measure can be connected
in the symmetric difference metric by continuously displacing a continuously in-
creasing portion of the first set by an equivalent portion of the second set, fixing
the intersection. This concept is natural within the class of wavelet sets and we
discovered that it can be modeled and analyzed very effectively using operator
algebra techniques, and generalized appropriately, leading to our definition. Ex-
amples abound, and there are simple examples of wavelets which are connected
but not directly connected. Direct connection is quite special. However, using
some earlier results of the authors leading up to this paper, many pairs of wavelet
sets, hence MSF-wavelets, can be shown to be directly connected. Speegle’s in-
teresting paths constructed in [26], which prove connectivity of all wavelet sets,
are not direct paths. The direct connectivity of arbitrary pairs of wavelet sets
still remains an open problem.

Following [3], a unitary system U acting on a Hilbert space H is a collection of
unitary operators in B(H) containing I. A complete wandering vector for U , if one
exists, is a vector ψ ∈ H with the property that Uψ is an orthonormal basis for
H. Let W(U) denote the set of all complete wandering vectors for U . If S ⊂ B(H)
is a set of operators and E ⊂ H is a set of vectors, define the E-commutant of S
to be

CE(S) := {A ∈ B(H) : (AS − SA)E = {0}, for all S ∈ S}.

This is a W.O.T. closed linear subspace of B(H). If x ∈ H, define the local
commutant of S at x to be Cx(S) := C{x}(S) = {A ∈ B(H) : (AS − SA)x =
0, for all S ∈ S}. Then CE(S) = ∩

x∈E
Cx(S). (It follows that CE(S) is 2-reflexive,

see ([1]).) An easy argument shows that if x is cyclic for U , in the sense that
∨

U∈U
Ux = H, then x is separating for Cx(U).

If ψ, η ∈ W(U), let V η
ψ denote the unitary operator defined by

V η
ψ (

∑

U∈U

cUUψ) =
∑

U∈U

cUUη, {cU} ∈ `2(U).
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Then, an easy computation shows that V η
ψ ∈ Cψ(U). Reversing this argument,

one can show that if V is any unitary operator in Cψ(U) then V ψ ∈ W(U). Since
ψ separates Cψ(U), it follows that V η

ψ is the unique unitary operator in Cψ(U)
that maps ψ to η.

If ψ, η ∈ W(U), let us say that {ψ, η} is a nonatomic pair of complete wandering
vectors for U if {U , V η

ψ }′ (the operators commuting with V η
ψ and all the unitaries

in U) is a nonatomic von Neumann algebra (i.e. it contains no nonzero minimal
projections). In general, we will call {U , V η

ψ }′ the essential von Neumann algebra
for the pair {ψ, η} and write

Mψ,η := {U , V η
ψ }

′.

A standard argument using Fuglede’s Theorem shows that Mψ,η is a von Neu-
mann algebra. Since V η

ψ = (V ψ
η )∗ we have Mψ,η = Mη,ψ.

We have the following simple fact.

Proposition 1.1. If {ψ, η} is a nonatomic pair in W(U), then there exists a
continuous path α(t)t∈[0,1] in W(U) with α(0) = ψ and α(1) = η.

Proof. A standard argument implies that Mψ,η contains a nest {Pt : 0 ≤ t ≤
1} of projections with P0 = 0, P1 = I, such that t → Pt is (strong-operator-
topology)-continuous. Let

(1) α(t) := (I − Pt)ψ + Ptη, 0 ≤ t ≤ 1.

Then α(t) is a norm-continuous path of vectors in H. Let Wt := I−Pt +PtV
η
ψ ,

0 ≤ t ≤ 1. Clearly α(t) = Wtψ. Since Pt ∈ U ′ and Cψ(U) is closed under left
multiplication by elements of U ′ (notice that V η

ψ , I ∈ Cψ(U)), we have Wt ∈ Cψ(U)
for all t ∈ [0, 1]. Moreover since Pt commutes with V η

ψ , one can easily check that
Wt is unitary. So, α(t) ∈ W(U) for all t. £

We will call the path (1) connecting the elements of a nonatomic pair a direct
path of wavelets, and we will say that the wavelets in a nonatomic pair are directly
connected.

2. Orthonormal Dyadic Wavelets

For the reader convenience let us introduce the notation and terminology of the
classical case of dyadic orthonormal one-dimensional wavelets. For this setting
we let H be the L2-space with respect to µ (Lebesgue measure) on IR which is
denoted as usual by L2(IR). The unitary system U is determined by the unitary
operators D and T (bilateral shifts of infinite multiplicity) defined on L2(IR) by

(Df)(x) =
√

2f(2x) and (Tf)(x) = f(x− 1), a.e. x ∈ IR, f ∈ L2(IR),
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in the following way:

U (= UD,T ) := {DkT l : k, l ∈ ZZ}.

A function w ∈ L2(IR) is called simply a wavelet if w ∈ W(UD,T ). It is well-known
(see, e.g. [13]) that ŵ is bounded if w is a wavelet. We say that a subset G of
IR of positive measure is a wavelet set if 1√

2π
χG = ŵ, where w is a wavelet in

L2(IR) and ̂f denotes the Fourier-Plancherel transform of the function f , which
for functions in L1(IR) ∩ L2(IR) is defined by

̂f(x) =
1√
2π

∫

IR

e−itxf(t)dµ(t), x ∈ IR.

The inverse Fourier transform of a function f ∈ L2(IR) is denoted by f̌ . A wavelet
w satisfying 1√

2π
χG = |ŵ| for some wavelet set G is called a (MSF)-wavelet, and

we call G the support of ŵ. One knows (see, e.g. [3]) that the set of exponentials
{einx|G : n ∈ ZZ} is an orthonormal basis for L2(G).

One of the simplest examples of such sets is the Littlewood-Paley wavelet set
E := [−2π,−π)∪[π, 2π). One less obvious example of a wavelet set is the following
union of eight intervals

(2) S :=

[

−4π

3
,−5π

4

)

∪
[

−π,−2π

3

)

∪
[

−5π

8
,−π

2

)

∪
[

4π

7
,
2π

3

)

∪
[

3π

4
, π

)

∪
[

4π

3
,
11π

8

)

∪
[

4π,
32π

7

)

∪
[

11π

2
, 6π

)

,

which was constructed in [14]. The wavelet corresponding to the Littlewood-Paley
wavelet set (via the Fourier transform) is called the Shannon wavelet.

For an arbitrary wavelet set F it was proved in [15] that there exists another
wavelet set ˜F (called regularized ) with the properties that F = ˜F a.e. [µ] and
such that IR =

⋃

k∈ZZ

( ˜F + 2kπ) (disjoint union) and IR \ {0} =
⋃

k∈ZZ

(2k
˜F )(disjoint

union). Let us denote by WS the class of all regularized wavelet sets.
Hence, for F ∈ WS we can define the following two maps associated with

F : let τF : IR → F be the function defined by τF (x) = x + 2jπ, where j is
the unique integer satisfying x + 2jπ ∈ F and let δF : IR\{0} → F be the map
defined by δF (x) = 2kx, where k is the unique integer for which 2kx ∈ F . If G is
another regularized wavelet set it is clear that the restrictions of τF and δF to G

are measurable bijections. Thus we can associate with every F, G ∈ WS (F, G

regularized) a measurable bijection on F [resp. G] defined by
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(3) hFG := τF |G ◦ δF
−1
|G , [resp. hGF := τG|F ◦ δG

−1
|F ].

In case F := E (Littlewood-Paley wavelet set) we simply denote hEG by hG.
It turns out that the conjugation ˜hG := ξ ◦ hG ◦ ξ−1 : [0, 1) → [0, 1) of hG, by

the function ξ : E → [0, 1) defined by

(4) ξ(x) =















x

2π
, x ∈ [π, 2π)

x

2π
+ 1, x ∈ [−2π,−π),

takes a simpler form than hG. The following characterization for the class of
wavelet sets in terms of the corresponding maps ˜hG has been established in in
([14]). We shall term the maps ˜hG wavelet induced maps.

Proposition 2.1. ([14]) Let G ∈ WS and ˜hG be defined as above. Then the map
˜hG has the following properties:

(i) ˜hG is a measurable bijection of [0, 1),
(ii) there exists a measurable partition {Ak}k∈ZZ of [ 12 , 1) and a measurable

partition {Bk}k∈ZZ of [0, 1
2 ), such that

(5) ˜hG(x) =







b2kxc, x ∈ Ak, k ∈ ZZ,

b2k(x− 1)c, x ∈ Bk, k ∈ ZZ,

where bxc denotes the fractional part of the real number x.

Moreover, if h is a map satisfying (i) and (ii) then there exists a (regularized)
wavelet set G such that h = ˜hG (a.e. [dµ]).

For the wavelet set S given by (2) for instance, one can compute ˜hS and obtain
the following wavelet induced map
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(6) ˜hS(x) =







































































b2−1(x− 1)c on
[

0,
1
3

)

∪
[

3
8
,
1
2

)

,

b22xc on
[

1
2
,
4
7

)

∪
[

11
16

,
3
4

)

,

b2−1xc on
[

4
7
,
2
3

)

∪
[

3
4
, 1

)

,

bxc on
[

1
3
,
3
8

)

∪
[

2
3
,
11
16

)

.

We denote the class of all wavelet induced maps by WI. By Proposition 2.1,
there exists a one-to-one correspondence between WS and WI.

Before we state our results about the essential algebra for a pair of wavelets
we introduce more terminology and point out some simple observations.

Let Da (a > 0) and Tb (b ∈ IR) denote the unitary operators on L2(IR) defined
by (Daf)(x) =

√
af(ax), x ∈ IR, f ∈ L2(IR) and (Tbf)(x) = x− b, x ∈ IR, f ∈

L2(IR). It is easy to check that we have the following relations satisfied by these
operators:

(7) TbDa = DaTab, DaD′
a = Daa′ , TbTb = Tb+b′ , a, a′ ∈ (0,∞), b, b′ ∈ IR.

For A ∈ B(L2(IR)) we write ̂A for the bounded linear operator defined by
̂A ̂f = ̂Af , f ∈ L2(IR). If A ⊂ B(L2(IR)) then ̂A := { ̂A : A ∈ A}. It is easy to
check that ( ̂Df)(x) = 1√

2
f(x

2 ), x ∈ IR, f ∈ L2(IR), and ( ̂Tf)(x) = e−ixf(x), x ∈
IR, f ∈ L2(IR). In [3] it was proved that

(8) { ̂D, ̂T}′(= DP) := {Mf : f ∈ L∞(IR), f(s) = f(2s) a.e. [µ], s ∈ IR},

(Mf is the operator of multiplication by f on L2(IR)). DP is called the dilation-
periodic-algebra. Hence, in the classical case M̂ψ,η is just a subalgebra of DP
which, in particular, implies that Mψ,η is an abelian von Neumann algebra for
every ψ, η ∈ W(U). For an arbitrary F ∈ WS, it is clear from (8) that the algebra
DP is isomorphic to L∞(F ), via the isomorphism f → M

ef , f ∈ L∞(F ), where

(9) ˜f(x) = f(δF (x)) a.e. [µ], x ∈ IR.

Proposition 2.2. Let ψ, η ∈ W(U), A ∈ B(L2(IR)) such that A commutes with
D and T . Let us assume that the representation of Aψ in the basis {DkT lψ}k,l∈ZZ
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is given by:

(10) Aψ =
∑

s,t∈ZZ

as,tD
sT tψ, (

∑

s,t∈ZZ

|as,t|2 < ∞).

Then the following are equivalent:

(i) A ∈Mψ,η,
(ii) A(DlTmη) =

∑

s,t∈ZZ

as,tV
η
ψ Dl+sTt+2smψ for every l, m ∈ ZZ,

(iii) (under the assumption that ψ is a (MSF )-wavelet)

(11) A(DkT lη) =
∑

m∈ZZ

a0,mDkT l+mη, for every k, l ∈ ZZ.

Proof. Let A ∈ B(L2(IR)) an operator commuting with and D and T . Then
A ∈ Mψ,η if and only if A commutes with V η

ψ . The equation AV η
ψ = V η

ψ A

is equivalent to AV η
ψ (DlTmψ) = V η

ψ A(DlTmψ) for every l, m ∈ ZZ. Since A

commutes with D and T we have equivalently:

(12) A(DlTmη) = V η
ψ DlTm(Aψ), l, m ∈ ZZ.

Using the representation of Aψ in (10) the relations in (12) completely determine
A on the elements of the basis {DlTmη}l,m∈ZZ:

A(DlTmη) =
∑

s,t∈ZZ

as,tV
η
ψ DlTmDsT tψ, l, m ∈ ZZ.

Therefore, taking into account that T s = Ts, Ds = D2s for all s ∈ ZZ and the
relations (7), the condition AV η

ψ = V η
ψ A becomes equivalent to

(13)
A(DlTmη) =

∑

s,t∈ZZ

as,tV
η
ψ Dl+sTt+2smψ, l,m∈ZZ,

or

A(DlTmη) =
∑

s,t∈ZZ,s≥0

as,tD
l+sTt+2smη +

∑

s,t∈ZZ,s<0

as,tV
η
ψ Dl+sTt+2smψ, l,m∈ZZ,

This shows the equivalence of (i) with (ii).

Remark. If ψ is a (MSF)-wavelet it turns out that the coefficients as,t of the
second sum in (13) are zero and these equations become considerably simpler.

Indeed, if ψ is a (MSF)-wavelet then ψ = 1√
2π

ǧ for some measurable function
g of modulus one supported on F ∈ WS. Since A ∈ {D, T}′ we may assume
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that ̂A = Mf with f ∈ L∞(IR). Hence ̂A ̂ψ = Mf
1√
2π

g =
1√
2π

f|F g. Now, since

{em(x) =
1√
2π

eimx}m∈ZZ is an orthonormal basis for L2(F ), we have a represen-

tation of f|F in this basis, say f(x) =
∑

m∈ZZ cmeimx, x ∈ F , with convergence

in L2(F ). Then, ̂A ̂ψ(x) =
1√
2π

∑

m∈ZZ

cmeimxg(x) =
1√
2π

∑

m∈ZZ

cm( ̂T−mg)(x), with

convergence in L2(F ) which is the same, in this case, as convergence in L2(IR).
Thus, Aψ =

∑

m∈ZZ cmT−mψ, which implies that a0,m = c−m and ak,m = 0 for
all k 6= 0, k, m ∈ ZZ. The condition on A to commute with V η

ψ (equalities in (13))
is then equivalent to the condition (11) in (iii). £

Theorem 2.3. Let ψ be a MSF-wavelet supported on F ∈ WS and let η ∈ W(U).
Then Mψ,η is isomorphic (via the Fourier transform) to the subalgebra of DP

(14) {Mf ∈ DP : (f − f ◦ τF )η̂ = 0}.

Proof. By Proposition 2.2, it suffices to analyze how (11) changes when we
apply the Fourier transform to it. For A ∈ Mψ,η there is f ∈ L∞(IR) such that
f(s) = f(2s) a.e. s ∈ IR, and ̂A = Mf . Then (11) becomes:

2−
k
2 f(x)e

−ilx

2k η̂
( x

2k

)

=
∑

m∈ZZ

cm2−
k
2 e

−i(l−m)x

2k η̂
( x

2k

)

, k, l ∈ ZZ, in L2(IR),

where, for the convenience of the reader, we recall that cm = 1√
2π

< f |F , em >L2(F ),

m ∈ ZZ.
After obvious simplifications and the change of variable

x

2k
= y we obtain that

the above equality is equivalent to
(

f(2ky)−
∑

m∈ZZ

cmeimy

)

η̂(y) = 0 with convergence in L2(IR).

Taking into account that f is 2-dilation periodic the last equality together with
the above remarks imply the following equivalent condition on f :

(15) f(x) =
∑

m∈ZZ

cmeimx in L2(IR, |η̂|2dµ).

Let us first show now that the relation in (14) follows from (15). Indeed, using
(15), we obtain that for some increasing sequence of integers {nk}k∈IN we have

lim
nk→∞

(

˜f(x)−
m=nk
∑

m=−nk

cmeimx

)

η̂(x) = 0 a.e. x ∈ IR.
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But the sequence of functions {
∑l=nk

l=−nk
cle

ilx}k∈IN contains a subsequence which
converges a.e. on IR to f(τF (x)) and so the above equation implies that (f(x)−
f(τ(x)))η̂(x) = 0 for a.e. x ∈ IR.

Next, we show that the condition on f in (14) implies (15). Since (f(x) −
f(τ(x)))η̂(x) = 0 a.e. on IR, we write

∫

IR

∣

∣

∣

∣

∣

f(x)−
m=n
∑

m=−k

cmeimx

∣

∣

∣

∣

∣

2

|η̂(x)|2dµ(x) =

∫

IR

∣

∣

∣

∣

∣

f(τ(x))−
m=n
∑

m=−k

cmeimx

∣

∣

∣

∣

∣

2

|η̂(x)|2dµ(x)

Since η is a wavelet one can show that
∑

l∈ZZ |η̂(x + 2lπ)|2 = 2π for a.e. x ∈ IR
(see for instance [13]). Hence we may continue with the right hand side of the
above equality as follows:

∫

IR

∣

∣

∣

∣

∣

f(τ(x))−
m=n
∑

m=−k

cmeimx

∣

∣

∣

∣

∣

2

|η̂(x)|2dµ(x)

=
∑

l∈ZZ

∫

F−2lπ

∣

∣f(τ(x))−
∑m=n

m=−k cmeimx
∣

∣

2 |η̂(x)|2dµ(x)

=
∑

l∈ZZ

∫

F

∣

∣

∣

∣

∣

f(x)−
m=n
∑

m=−k

cmeimx

∣

∣

∣

∣

∣

2

|η̂(x + 2lπ)|2dµ(x)

= 2π
∫

F

∣

∣f(x)−
∑m=n

m=−k cmeimx
∣

∣

2
dµ(x) −→ 0

as k,n→∞
.

This concludes our proof. £

Corollary 2.4. Suppose ψ is a MSF-wavelet supported on F ∈ WS and η ∈
W(U) is supported on G ∈ WS. Then Mψ,η is isomorphic to the subalgebra of
L∞(F ) [resp. L∞(G)]

(16) {f ∈ L∞(F ) : f = f ◦ hFG}, [resp.{f ∈ L∞(G) : f = f ◦ hGF }]

where hFG[ resp. hGF ] is defined by (3).

Proof. Any 2-dilation periodic function on IR can be regarded as a function
f ∈ L∞(F ) extended as in (9) simply by setting f(x) := f(δF (x)) for x ∈ IR\{0}.
Then the equality (f − f ◦ τF )η̂ = 0 means that f(x) = f(τF (x)) for a.e. x ∈ G.
Now, if we take x = δF

−1
|G (y) with y ∈ F , by using (3) we get f(y) = f(hFG(y))

for a.e. y ∈ F . £
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Definition 2.5. Let Ξ be a group of bijections of the set X and [x]Ξ := {ξ(x) :
ξ ∈ Ξ}, x ∈ X, be the orbit of a point x under the action of Ξ on X. A set W is
called a cross-section for Ξ if W contains one and only one point from each orbit
[x]Ξ, x ∈ X. If Ξ is singly generated by a bijection h of X then a cross-section
for Ξ will be simply called a cross-section for h.

We have been using the term wandering set instead of cross-section in [2], [15].
The term wandering is used with a slightly different meaning in the theory of
dynamical systems. To avoid any further confusion we decided to use a different
terminology.

It is easy to see that the algebra described by (16) is nonatomic if hFG admits
a measurable cross-section. Let us observe then that Corollary 2.4 together with
Proposition 1.1 and the above remark give, in particular, the result of Theorem 2.1
contained in [15]. A natural problem which arises in this context is to characterize
the measurable isomorphisms h of F for which the algebra given as in (16) (with
hFG = h) is nonatomic. It is easy to see that in general we have the following
proposition.

Proposition 2.6. Let (X,M, ν) be a measure space, h : (X,M, ν) → (X,M, ν)
be a measurable bijection which preserves null sets (i.e. sets of ν measure zero)
and A := {f ∈ L∞(X, ν) : f = f ◦ h}. The following are equivalent:

(i) A is a nonatomic von Neumann algebra,
(ii) there exists a continuous map Ω : [0, 1] → (M, d) such that Ω(0) = ∅,

Ω(1) = X and h(Ω(t)) = Ω(t), where (M, d) is the metric space of equiv-
alent classes of measurable subsets of X modulo null sets with the distance
d(A, B) := ν ((A\B) ∪ (B\A)) , A, B ∈M,

(iii) there exists no measurable set of positive measure ω ⊂ X such that h(ω) ⊂
ω and h|ω is an ergodic transformation with respect to ν (i.e. for ω′ ⊂ ω

such that h(ω′) ⊂ ω′ it follows that either ν(ω′) = 0 or ν(ω\ω′) = 0).

We should mention here that the condition on h to admit a measurable cross-
section is just sufficient but not necessary to insure that A is nonatomic. Indeed,
let us take X = [0, 1) × [0, 1), ν the product Lebesgue measure and h(x, y) =
(x, by + αc) with α 6∈ IQ. Then one can choose Ω(t) = {(x, y) : 0 ≤ x < t, y ∈
[0, 1] } and observe that the property (ii) in Proposition 2.6 is satisfied but there
exist no measurable cross-section for h since h is invariant with respect to ν.

Nevertheless, in [15] it is conjectured that every map in WI admits a measur-
able cross-section and it is shown in [2] that this is the case for a special subclass
of WI which includes most of the known example of wavelet induced maps. One
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can ask whether the condition on hF ∈ WI to admit a measurable cross-section
is also necessary in order for Mψ,η to be nonatomic. For a real-valued measurable
map f we use the notation supp(f) for the set {x|f(x) 6= 0}.

The following corollary can be regarded as a generalization of Corollary 2.4.

Corollary 2.7. Let ψ ne an MSF wavelet supported on F and η ∈ W(U) a wavelet
having the property that supp(η̂) ⊂ ∪m

k=1Gk, where Gk ∈ WS, k = 1, ..., m. Then
Mψ,η is isomorphic to

(17)
{f ∈ L∞(F ) : f(x) = (f ◦ hFGk

)(x),

a.e. x ∈ δF (supp(η̃) ∩Gk) for k = 1, ..., m}.

Proof. As in the proof of Corollary 2.4, the result follows easily from (3) and
Theorem 2.3. £

There are many wavelets η which satisfy the hypotheses of this corollary. In
fact, every band-limited wavelet whose Fourier transform is a continuous function
(for instance Lemarié-Meyer wavelets) are such examples. Indeed, the supp(ŵ)
is contained in a compact set which does not contain zero ([13]). Using a result
proved in [17] one can always cover any such compact set with finitely many
wavelet sets.

The following proposition combined with Corollary 2.7 can be regarded as a
generalization of the result obtained in [15].

Proposition 2.8. Let F, Gk ∈ WS, (k = 1, ..., m) and assume that the group
Ξ generated by hFGk

admits a measurable cross-section. Then the algebra {f ∈
L∞(F ) : f = f ◦ hFGk

for every k = 1, ..., m} is nonatomic. Consequently, if Ak,
(k = 1, ..., m) are measurable subsets of F then the algebra

{f ∈ L∞(F ) : f = f ◦ hFGk
a.e. on Ak for every k = 1, ..., m}

is nonatomic.

Proof. Let us denote Ft = F ∩ (−∞, tan(tπ−π/2)) for every t ∈ [0, 1]. Clearly,
E0 =, E1 = F and µ(Ft 5 Fs) → 0 as t → s for s ∈ [0, 1]. Also, we denote
by Ωt =

⋃

ξ∈Ξ

ξ(Ft) (t ∈ [0, 1]). For every t ∈ [0, 1] and k = 1, ..., m, the set

Ωt is invariant under hFGk
by construction. Hence ft := χΩt has the property

ft = ft ◦ hFGk
for every k = 1, ..., m. So {ft}t∈[0,1) is a nest of projections in our

algebra joining 0 and 1. To finish the proof, we only need to show that this nest
is SOT-continuous. It suffices to show that t → µ(Ωt) is continuous. In order to
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do so, let us observe that Ξ is a countable group and then the proof follows using
the same argument as in the proof of Lemma 2.2 in [15]. £

2.1. Examples of nonatomic and atomic pairs. The following result shows
that, using our technique, every wavelet support is contained in some region of the
real line can be connected by a direct path of wavelets to the Shannon wavelet.
In the next theorem this region is just one of the simple extensions from E. A
natural question which appears at this point is whether or not there exists a
maximal region (relative to inclusion) containing E with the property that any
wavelet whose support is compactly contained in this region is directly connected
with the Shannon wavelet. If such a region exists it would be interesting if one
could exhibit it. On the other hand, the whole real line is not such a maximal set
because of Proposition 2.10.

Theorem 2.9. Let ψ be the Shannon wavelet and η ∈ W(U) be such that
supp(η̂) ⊂ [−2π,−ε) ∪ [π, 4π − ε) for some ε > 0. Then ψ and η are directly
connected.

Proof. Let us consider the following family of wavelet sets from ([3]):

Fα = [−2π + 2α,−π + α) ∪ [π + α, 2π + 2α)

with α ∈ [−π, π). For n ∈ IN we let αn = π − π
2n and write hn = hFαn

. Let us
observe that

[−2π, 0) ∪ [π, 4π) = E ∪
⋃

n∈IN

Fαn

and so, by our hypothesis, it follows that there exists an L ∈ IN such that

supp(η̂) ⊂ E ∪
L
⋃

n=1

Fαn

The result follows then from Corollary 2.7 and Proposition 2.8 provided we show
that the group ΞL generated by the maps hk (k = 1, ..., L) admits a measurable
cross-section. This is certainly the case if we show that ΞL is a finite group. One
can easily find that hk is given by

hk(x) =



































2−kx + 2π, x ∈ [−2π,−π)

2x− 4π, x ∈
[

π,
3π

2

)

2x− 2π, x ∈
[

3π

2
, 2π − π

2k

)

x, x ∈
[

2π − π

2k
, 2π

)

.
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It is more convenient to work with the wavelet induced maps ˜hk = ξ ◦hk ◦ ξ−1

and ˜h−k = ξ ◦ h−k ◦ ξ−1. We write ˜ΞL for the corresponding group generated by
˜hk, ˜h−k, k = 1, ..., L. It turns out that ˜hk can be given in only three pieces:

˜hk(x) =































b2−k(x− 1)c, x ∈
[

0,
1
2

)

b2xc, x ∈
[

1
2
, 1− 1

2k+1

)

x, x ∈
[

1− 1
2k+1

, 1
)

.

Let us denote by A the set of points
{

0,
1
2
, ..., 1− 1

2k
, ..., 1− 1

2L+1

}

. We observe

that each ˜hk leaves the set A invariant and since ˜h
(k+1)
k = id it follows that ˜h−1

k

leaves A invariant too. Therefore every map in ˜ΞL leaves A invariant. Moreover,
every element in ˜ΞL is a composition of finitely many of the maps ˜hk (k = 1, ..., L)
and therefore it is a piecewise linear right continuous bijection of [0, 1) whose
points of discontinuity can only possible be in the set A. Hence every element of
˜ΞL is uniquely determined by what it does to the set A. Therefore there cannot
be more elements in ˜ΞL then (L + 2)! (the order of the permutation group of the
elements of A). £

It is interesting to note that a class of wavelets known as Lemarié-Meyer wavelets
has been reconstructed in [3] using the natural notion of an interpolation pair
of wavelets (for instance, a pair (E,F ), F ∈ WS, for which h2

F = id). In [11]
and [12], smoothing of the same Shannon wavelet also led to these Lemarié-Meyer
wavelets. So, there are reasons to believe that one can obtain a result similar to
Theorem 2.9 which will apply to Lemarié-Meyer wavelets.

We continue with examples of pairs of wavelets which are not directly con-
nected. Let us consider ψ be the Shannon wavelet and η = χ[0,1/2) − χ[1/2,1)

(the Haar wavelet). A simple computation shows that η̂(x) = i√
2π

(eix/2−1)2

x ,
x ∈ IR\{0}. This map is clearly supported on the whole real line and so, the
following proposition shows that ψ and ϕ cannot be connected by a direct path.

Proposition 2.10. Let ψ be the Shannon wavelet and η ∈ W(U) be such that
supp(η̂) ⊇ [−4π,−2π]∪[2π, 4π]. Then Mψ,η = ICI and so ψ and η are not directly
connected.

Proof. Let f ∈ L∞(E) such that M
ef ∈ M̂ψ,η where ˜f is defined by (9) in

the case F := E. Using Theorem 2.3, we obtain that f(δE(x)) = f(τE(x)) a.e.
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x ∈ 2E since by hypothesis 2E ⊂ supp(η̂). Hence, we have that

(18) f(x) = f(δE(2x)) = f(τE(2x)) a.e. x ∈ E.

We write ̂f = f ◦ ξ−1 where ξ was defined in (4). It is clear that ̂f ∈ L∞([0, 1))
and (18) becomes

̂f(x) = ̂f(b2xc) a.e. x ∈ [0, 1),

where by bxc we denoted the fractional part of the real number x. In [25] it
was proved that the transformation T (x) = b2xc is an ergodic transformation
on [0, 1) with respect to an invariant measure ν which is equivalent to Lebesgue
measure. By ergodicity theorem (see for instance Theorem 4.4 in [24]), for every
g ∈ L1([0, 1), ν)(= L1([0, 1), µ)) we have

lim
n→∞

1
n

n−1
∑

k=0

g(T k(x)) =
∫

[0,1)

gdν a.e.[ν]([µ]) x ∈ [0, 1).

Since ˜f = ˜f ◦ T in L∞([0, 1)) it follows that f is essentially just a constant
function. Hence, we get that M̂ψ,η = ICI. £

Remark. It was proved in [20] that every piecewise C1 function f on [0, 1) such
that inf |f ′| > 1 admits an invariant measure which is absolutely continuous with
respect to Lebesgue measure. In [21](see also [18]), the authors improved upon
this result and showed that there exist finitely many sets Lj (j = 1, ..., n) ( n is
the number of discontinuities of f and/or f ′) such that f is ergodic on Lj with
respect to the Lebesgue measure. This result can be used to prove the following
more general result than Proposition 2.10.

Proposition 2.11. Let ψ be the Shannon wavelet and η ∈ W(U) be such that
supp(η̂) contains a finite union of intervals

⋃

k Jk ⊂ (−∞,−2π) ∪ [2π,∞) with
the property that δE (

⋃

k Jk) = E. Then Mψ,η ⊂ ICm for some m ∈ IN and so ψ

and η are not directly connected.

3. The n-dimensional case

Let IRn be, as usual, n-dimensional Euclidian space and take H = L2(IRn)
the complex Hilbert space of (equivalence classes of) square integrable complex-
valued functions on IRn relative to Lebesgue-Borel measure µn on IRn. The
Fourier transform of f ∈ L2(IRn) ∩ L1(IRn) is defined by

̂f(x) =
1

(2π)n/2

∫

IRn

e−i<x,t>f(t)dµn(t).
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The unitary systems pertinent to orthonormal wavelet theory in higher dimen-
sions arise in the following way. For k ∈ IN, let Mk(IR) denote the algebra of k×k

matrices with entries from IR. If A ∈ Mn(IR) is invertible and v ∈ IRn then the
operators DA, Tv in B(L2(IRn)) defined by

(DAf)(x) = |det A| 12 f(Ax) (a.e.) x ∈ IRn, f ∈ L2(IRn),

(Tvf)(x) = f(x− v) (a.e.) x ∈ IRn, f ∈ L2(IRn),

are clearly unitary operators. Let e1, e2, ..., en be the standard basis for IRn and
let L := {x ∈ IRn : x =

∑n
k=1 xkek, xk ∈ ZZ} be the group of vectors generated

by integer linear combinations of the basis {ek}. Then we set

U(= UA) := {Dk
ATv : k ∈ ZZ, v ∈ L}.

If f ∈ L2(IRn) is a complete wandering vector for the above unitary system,
then f is called a (single-function) dilation-A orthonormal wavelet , and the col-
lection of all such wavelets relative to this unitary system will be denoted by WA.
One can consider that {ek} is just an arbitrary basis of IRn but it was shown in
[16] that we can always change the matrix A accordingly to obtain an equivalent
wavelet theory using the standard basis. In fact, two such unitary systems gener-
ated by matrices A and B are weakly equivalent (in the sense of [16]) if and only
if A = CBC−1 where C is a matrix with integer coefficients and determinant ±1.

It is known [4] that wavelets exist when A is an expansive matrix (i.e. all the
eigenvalues of the matrix A have modulus greater than 1). Various examples of
dilation-A wavelets corresponding to different matrices A of interest are explicitly
constructed in [5] and [9]. All of this examples are (MSF)-wavelets (i.e. the abso-
lute value of their Fourier transform is the characteristic function of a measurable
set).

Most of the facts from one-dimensional case can be generalized to this setting.
First we need the following lemma.

Lemma 3.1. Let A ∈ Mn(IR) be an expansive matrix and L be the group of
vectors in IRn defined above. Then the set {Akv : v ∈ L, k ∈ ZZ} is dense in IRn.

Proof. Clearly, limm→∞A−mek = 0 for every k = 1, ..., n. Hence, given an
ε > 0 there exist m ∈ IN such that ‖A−mek‖ < ε for all k = 1, ..., n. For u ∈ IRn

let Amu =
∑n

k=1 ukek be the writing of Amu in the basis {ek}. Then, if we denote
by [x] the greatest integer smaller than the real number x, we have

‖u−A−m(
n

∑

k=1

[uk]ek)‖ = ‖A−m(
n

∑

k=1

(uk − [uk])ek)‖ ≤
n

∑

k=1

bukc‖A−mek‖ ≤ nε,
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which proves our lemma. £

An interesting problem which arises naturally is to characterize all matrices A

with the property that {Akv : v ∈ L, k ∈ ZZ} is dense in IRn. Next, we state and
sketch the proof of the multi-dimensional equivalent of (8).

Proposition 3.2. Let A ∈ Mn(IR) be an expansive matrix and UA defined as
above. Then

(19)

̂U ′A
(

= { ̂T ∈ B(L2(IRn)) : ̂TS = S ̂T , S ∈ ̂UA}
)

=

{Mf ∈ B(L2(IRn)) : f ∈ L∞(IRn), f(x) = f(Atx) a.e. x ∈ IRn}

where At is the transpose of the matrix A.

Proof. The proof follows exactly the same steps as in the one-dimensional case
and we include it here just for completeness. It easy to see that DA−mTvDAm =
TAmv for every m ∈ ZZ and v ∈ L. Then if T ∈ U ′A then T commutes with all the
translation operators of the form TAmv (m ∈ ZZ, v ∈ L) and then by Lemma 3.1,
T commutes with all the translations Tu, u ∈ IRn. Let K := [0, 1)× ...× [0, 1)

︸ ︷︷ ︸

n times

be the generalized cube in IRn. It is easy to see that the vector χK is cyclic for
the abelian von Neumann algebra generated by all translation operators which
is denoted by T . Hence, T is a m.a.s.a (maximal abelian selfadjoint algebra).
It follows that U ′A is contained in T ′ = T . A simple computation shows that
D̂A−1 = DAt and ̂Tu = Me−i<·,u> for every u ∈ IRn. Hence, ̂T is a m.a.s.a and
it is generated by the multiplication operators Me−i<·,u> . Since the algebra M
of all multiplication operators with functions in L∞(IRn) contains ̂T and it is a
m.a.s.a itself, it follows that ̂T = M. Now, for f ∈ L∞(IRn), it is clear that Mf

is in ̂U ′A if and only if it commutes with ̂DA, or equivalently, it commutes with
DAt . Since MfDAt = DAtMf is equivalent to f(x) = f(Atx) for a.e. x ∈ IRn the
proposition is proved. £

As in the one-dimensional case and following the terminology in [4] and [5], we
say that a subset F of IRn of positive measure is a dilation-A wavelet set if the
inverse Fourier transform of (µn(F ))

−1
2 χF is a dilation-A orthonormal wavelet.

It is shown in [4] that a set F is an wavelet set if and only if

{(At)k(F )}k∈ZZ and {Tu(W )}u∈L

are both partitions for IRn (modulo sets of measure zero).
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In a proof similar to that given in [15] for n = 1, it can be shown and we
will assumed that F is a regularized wavelet set i.e. {(At)k(F )}k∈ZZ is a veritable
partition of IRn\{0} and {Tu(F )}u∈L is a genuine partition of IRn. We will simply
denote by WS(n, A) the collection of all dilation-A regularized wavelet sets. In
what follows we will fix F ∈ WS(n, A). It is then natural to define the maps
δF : IRn\{0} → F , τF : IRn → Fby setting δF (x) = (At)k(x)x (x ∈ IRn\{0}) and
τF (x) = Tu(x)x (x ∈ IRn), where k(x) ∈ ZZ and u(x) ∈ L are uniquely determined
by the conditions (At)k(x)x ∈ F and Tu(x)x ∈ F .

If G is another regularized wavelet set then δF |G : G → F and τF |G : G → F are
measurable bijections and we can define the measurable bijection hFG : F → F

analogously to the case n = 1 by

(20) hFG := τF |G ◦ δF
−1
|G

Clearly by Proposition 3.2, ̂U is isomorphic to the algebra L∞(F ) via the isomor-
phism f → M

ef where

(21) ˜f(x) = f(δF (x)).

Let us fix ψ, η ∈ WA and S ∈ {U}′. Then S ∈ {U , V η
ψ }′ if and only if SV η

ψ = V η
ψ S.

If we take into account that {Dk
ATuψ}k∈ZZ,u∈L is an orthonormal basis for L2(IRn)

we get that S ∈ {U , V η
ψ }′ if and only if

(22) S(Dk
ATuη) = V η

ψ Dk
ATuSψ, k ∈ ZZ, u ∈ L.

We write Sψ in the basis {Dk
ATuψ}k∈ZZ,u∈L as Sψ =

∑

k∈ZZ,u∈L ak,uDk
ATuψ and

then the equation (22) becomes

(23) S(Dk
ATuη) =

∑

l∈ZZ,v∈L

al,vV η
ψ Dk

ATuDl
ATvψ, k ∈ ZZ, u ∈ L.

One can check that we do have a similar relations to those in (7)

TvTw = Tv+w, DBDC = DCB , TvDB = DBTBv, B, C ∈ Mn(IR), v, w ∈ IRn.

Using these properties, (23) becomes

(24) S(Dk
ATuη) =

∑

l∈ZZ,v∈L

al,vV η
ψ Dk+l

A TAlu+vψ, k ∈ ZZ, u ∈ L.

Now, it becomes clear that if we want to obtain similar results as in case n = 1
we need to make new assumptions on the matrix A. As in some other papers
on n-dimensional wavelets we will assume that A(L) ⊂ L (see for instance [9]).
(We observe that the equation (24) simplifies even more if we assume in addition
that A−1(L) ⊂ L, which it is satisfied let’s say if A has integer coefficients and
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determinant 1 or -1. Unfortunately, for dilation matrices of this type, since they
are not expansive, there is no guaranty that the set WA is not empty.) Hence, we
can rewrite (24) as

(25)
S(Dk

ATuη) =
∑

l∈ZZ,l≥0,v∈L al,vDk+l
A TAlu+vη +

∑

l∈ZZ,l<0,v∈L al,vV η
ψ Dk+l

A TAlu+vψ, k ∈ ZZ, u ∈ L.

These equations simplify considerably if we assume that ψ is a (MSF)-dilation-
A wavelet defined by | ̂ψ| = (µn(F ))

−1
2 χF . Since S ∈ U ′, by Proposition 3.2,

there exists f ∈ L∞(F ) such that ̂S = M
ef . It is easy to see that the family

of functions {eu}u∈L (eu(x) = (µn(F ))
−1
2 ei<x,u>, x ∈ F ) forms an orthonormal

basis for L2(F ). Then if f(x) =
∑

u∈L cuei<x,u> in L2(F ), we have as before

(26) Sψ =
∑

u∈L

cuTuψ.

Therefore, using (25) for this case, it follows that S ∈ {U , V η
ψ }′ if and only if

(27) S(Dk
ATuη) =

∑

v∈L

cvDk
ATu+vη, k ∈ ZZ, u ∈ L.

The following theorem generalizes Theorem 2.3.

Theorem 3.3. Let A be a n× n matrix with real coefficients which is expansive
and satisfies the property A(ZZn) ⊂ ZZn. Consider ψ a (MSF)-dilation-A wavelet
supported on F ∈ WS(n, A) and let η ∈ WA. Then

(i) The algebra Mψ,η is isomorphic to the following subalgebra of L∞(F )

A := {f ∈ L∞(F ) : (f ◦ δF − f ◦ τF )η̂ = 0)};

(ii) If |η̂| = (µn(F ))
−1
2 χG where G ∈ WS(n, A) we have A = {f ∈ L∞(F ) :

f = f ◦ hFG}.

The proof of this theorem uses (27) and the same idea as in the proof of
Theorem 2.3.
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