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1. Introduction. We let X be an arbitrary infinite set. A semigroup S of total or
partial transformations of X is called ^-normal if hSh~1 = S, for all h in ^x, the
symmetric group on X. For example, the full transformation semigroup STX, the
semigroup of all partial transformations &X, the semigroup of all 1-1 partial transforma-
tions $x and all ideals of 3~x, ^x and Sx are ^--normal.

If 5 is a ^-normal semigroup then for each he^x the map

f-.f^hfh-1 (feS)

is an inner automorphism of 5. The set Inn 5 of all inner automorphisms of 5 is a
subgroup of the group Aut 5 of all automorphisms of 5. In [3] we showed that if S is a
"^-normal subsemigroup of 2TX then inner automorphisms exhaust all automorphisms of
S> that is A „ T „

Aut 5 = Inn 5.
The purpose of this paper is to extend the above result to an arbitrary ^--normal
subsemigroup 5 of 5PX and therefore to give a complete description of all automorphisms
of any ^--normal semigroup.

Schreier [10] in 1937 was the first to show that Aut ?fx = Inn STX- Since then many
authors have described the automorphisms of various ^--normal semigroups: Mal'cev [5]
(all ideals of 5*); Liber [4] ($x and all its ideals); Gluskin [1] (3^); Shutov [8] (the
semigroup of all partial transformations shifting at most a finite number of elements);
Shutov [9] (all ideals of 0>x); Schein [6,7] (all ^-normal subsemigroups of $x, but see
[2] for a special case). In [11] Sullivan showed that if 5 is a subsemigroup of ^x containing
a constant idempotent with the range {x}, for each xeX, then Aut 5 = Inn 5. In
particular if S is a ^--normal subsemigroup of 3PX containing a constant map then
Aut S = Inn S. Our result completes the task of characterization of all automorphisms of a
"^-normal semigroup, subsuming previously stated results for ^-normal semigroups.

In this paper we continue the development of a technique involving the production of
certain maximal one-sided ideals, first introduced in [3]. Here the assumption (made due
to [3]) that 5 contains a proper partial transformation allows us to restrict ourselves to the
study of only left ideals. Hence, unlike in [3], a uniform proof is given for the case when
S e $x as well as when 5 contains transformations which are not 1-1.

2. Transitivity. We say that a semigroup S is trivial if S c {<&, i}, where $ is the
empty and i is the identity transformation. In what follows 5 is non-trivial. The
composition of transformations / and g in S defined by the formula

fg(x)=f(g(*)), where xeX.
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In this section we show that each non-trivial ^-normal semigroup 5 is transitive. If 5
also is a constant-free semigroup then it is 2-transitive (Definition 2.3).

For an / in 8PX we denote the range of / by R(f), the domain of / by D(f) and the
partition of / by n(f) (= {f^(x) :x e R(f)}). If 5 is a subsemigroup of SPX, let

D(S) = {D(f):feS} and n(S) = {jz(f):f eS}.

We say that D(S) (n(S)) is normal if, for each h e <$x,

h(D(S)) = D{S) (h(jz(S)) = n(S)),

where h(D(S)) = {h(A):A e D(S)}, h(n(S)) = {h(si): si e JI(S)}.

The following lemma is straightforward.

LEMMA 2.1. If S is a ^-normal semigroup, then D(S) and JZ(S) are normal.

The proof of our next proposition coincides with the proof of result 1.3 of [3].

PROPOSITION 2.2. Every ^x-normal semigroup is transitive.

DEFINITION 2.3. A semigroup 5 is 2-transitive if for any two ordered subsets {x, u}
and {y, v) of X {x ± u, y ^ v) there exists an / in 5 with f(x) = y, f(u) = v.

LEMMA 2.4. If S is a ^-normal constant-free semigroup then each f in S has an
infinite range.

Proof. Suppose R(f) is finite. Then either D(f) is finite and 3g e S with
\D(g) fl /?(/)| = 1 (by 2.1), or n{f) contains an infinite subset A and 3qeS with
R(f) £ B e n{q) (by 2.1). In either case 5 contains a constant map (gfor qf).

PROPOSITION 2.5. Every ^x-normal constant-free semigroup S is 2-transitive.

Proof. Take arbitrary ordered subsets {x, u} and {y, v} of Z, x±u, y¥=v. We
construct an / in 5 such that /(x) = y and /(«) = v.

Firstly let x, y, u and v be distinct. Choose ( in 5 with t(x) = y (by 2.2) and let
zeD(t)\{x, y, r\x), t~\y)} (if such z does not exist then R(t)<=,{x, y, t(y)}, a
contradiction to 2.4). Let g = (z, u)t{z, u) and g(u) = (z, u)t{z) = w (here (z, «) denotes
the permutation of X interchanging z and u and leaving all other elements of X fixed).
Clearly g(x) = y, and if w = v, then f = g. If w ^ v, u then let / = (v, w)g(v, w) (since
z £ {^(x), t~l(y)}, w ¥^x, y, and this ensures f(x) = y).

Thus starting with t eS, t(x) =y, we construct either the required / o r a map g with
g(x)=y, g(u) = u. Similarly, starting with seS, s(u) = v, we can construct either the
required/or a map q with q{u) = v, q(x) = x. In the latter case we let / = (u, v)g(u, v)q.

Now assume that x, y, u and v are not all distinct. Choose a and b in X\{x, y, u,v},
ai=b, and with the aid of the first part of the proof construct r, seS with r(x) = a,
r(u) = b and s(a) = y, s(b) = v. Then / = sr is the required map.

3. Left ideals and automorphisms. Let 5 be a non-trivial ^-normal constant-free
semigroup. If S c 3~x, then Aut 5 = Inn 5 [3]. Hence we assume that S contains a proper
partial transformation and show that all automorphisms of S are inner.
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DEFINITION 3.1. Given distinct f, g eS let

Then £($, g) is a left ideal of 5, which we call a function left ideal.

We will show in 3.12 that there always exist /, g eS with 2£(f, g)¥= {<&}. However,
cS?(/, g) may consist of the empty map. Let 5, for example, be the semigroup of all 1-1,
onto transformations / with \X\D(f)\ = \X\. Choose an / in S. Clearly X\D(f) e D(S),
and so we can choose a g in 5 with D(g) = X\D(f). Then Z£(f, g) = {<!>}, because for any
leS, If = lg implies

D(f) => D(lf) = D(lg) E D(g) = X\D(f),

so Ig = 3>. But then D(l)OX = D(l)DR(g) = S>, the empty set. Thus / = * .
If <p e Aut S, then for any fgeS

f, 8)) = <P({1 e S : l f = Ig}) = {l'eS:

Similar equality holds for (p~* e Aut 5 and we deduce the following result.

LEMMA 3.2. Any <f>eAutS permutes function left ideals and (j>{5£{f, g)) =

Our aim is to translate the definition of i?(/, g) from the language of transformations
to the language of subsets of X (Proposition 3.11), and to obtain a bijection of X
associated with <£, specifically, with the permutation of function left ideals by 0.

DEFINITION 3.3. Let x eX and

2(x) = {leS:xeX\D(l)}.

Then Z£(x) is a left ideal of 5, which we call a point left ideal.

Notice that since 5 contains a proper partial transformation, 2.1 ensures that
<£{x) # 0 , for any xeX.

LEMMA 3.4. Given x, y e X the following three statements are equivalent:

(i) <?(*)£#00; (n)x=y; (iii) #(x)

Proof. Implications (ii)^>(iii) and (iii)=>(i) are trivial. To show (i) => (ii) assume
x^y, and choose, by 2.1, an AeD(S) with xeA' ( = X\A), ye A. If feS with
D(f) = A, then / e 2(x)\2(y), proving (i) >̂ (ii).

Define a map 8:X^> {g(x):x e X} via 8(x) = £(x), for each xeX. Clearly 6 is
onto and 3.4 ensures 6 is 1-1. Hence the next lemma.

LEMMA 3.5. 6 is a bijection.

Let 5*2 ° e t n e set of all doubletons {a, b} in X, a^b.
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DEFINITION 3.6. Given AeSf2, A = {a, b), let

= L(A)U(2(a) D

Then %{A) is a left ideal of S which we call a set left ideal.

REMARK. It is convenient to extend Definitions 3.3 and 3.6 by letting

= S.

Recall that n(S) is normal for ^-normal S (Lemma 2.1). Thus L(A) = «I> for some
A e 9>2 if and only if L(A) = <X> for all A e 9>2, i.e. if and only if 5 c 3>x. If 5 c 3X then
£{A) = S£(a) n ${b) {a, b eA) is a degenerate set left ideal. The next lemma reveals that
for any A = {a, b) e 92, £6(a) n £(b) * <D, ensuring that £(A) # O.

LEMMA 3.7. 77iere eacwtt a« >1 in D(S) with \A'\ ^ 2.

Proo/. Choose a proper partial transformation / in 5 and let x e X\D(f), v e £>(/),
/(y) = z. Take g in 5 with z e X\D(g) (by 2.1) and let t = gf. Then x, y e *\D(f) and we

REMARK 3.8. By applying the arguments of the proof of Lemma 3.7 to the map t
instead of/ i t is easy to produce an A e D(S) with \A'\^3.

LEMMA 3.9. Given A and B in ^2» the following three statements are equivalent:

(i) 2(A) <= Se(B); (ii) A = B; (iii)

Proof. Implications (ii)=>(iii) and (iii)=>(i) are trivial. We show (i)=>(ii). Assume
x e B\A and let C = (AU B)\{x}. Clearly, \C\ « 3. Using Remark 3.8 and the normality
of D(S) (see 2.1) choose an / in 5 with x e D(f) and C c X\D(f). Then / e 2(A)\2(B),
so 2(A) £ Se(B), proving (i) ̂ > (ii).

NOTATION 3.10. Given/and g in 5, let

A(/, g) =f(D(f)\D(g))Ug(D(g)\D(f)),

3>(f, 8) = «/(*)> 8(x)} :x e D(f) n D(g), f(x) *g(x)}.

PROPOSITION 3.11. Letf, geS with f±g and 2{f, g) # {$}. Then

2(f,8) = ( 0 2(x))n( PI
\xeA(f,g) I \AtE9>(

Proof. Let le££(f,g), x e A(/, g) and without loss of generality let f(y) = x for
some y e D(f)\D(g) (Notation 3.10). If x e D(l), then // = Ig implies that //(y) = lg(y),
and so y e D(g), a contradiction. Thus x $ D(l) and

Ie2(x). (1)
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Now let A e a>(f, g), A = {/(z), g(z)}. Then either / e 2(f(z)) D %(g(z)), or ACt D(l) *
3>, and // = Ig implies lf(z) = lg(z), whence / e L{A). We conclude that

(2)

Since (1) and (2) hold for all x e A(/, g) and A e 3)(f, g), we deduce that

VteA(/,g) I \Ae3>(
n ( ) ) ( n

teA(/,g) I \Ae3>(f,g)

Conversely, let

V x C /

Firstly observe that

D(lf) = D(lg). (3)

Indeed, assume that z e D(lf)\D(lg). Then z e D(g) (otherwise /(z) e A(/, g) and so
le£(f(z)), implying z « D(//)). Now/(z)^g(z) means that {/(Z),g(z)}=^e®(/,g),
and so / e <£(A). Since g(z) ^ D{1), we must also have that /(z) ^ £)(/), or z $ £>(//), a
contradiction which proves (3).

Now take z e D(lf) = D(lg). If f(z)=g(z), then certainly lf(z) = lg(z). If /(z)#
g(z), then {/(z),«(z)} = / le3( / ,g ) . Since /e^( / l ) and /lcZ)(/) we conclude that
/ e L(A), or lf{z) = lg(z) again. Thus // = Ig, or / e ̂ ( / , g).

PROPOSITION 3.12. Given an A in SP2 <*nd an x in X there exist f, g, p and q in S such
that

and there is a k in S such that p = kf, q = kg.

Proof. Take an A in £?2- On account of Proposition 3.11 it is sufficient to construct/
and g such that D(f) = D(g) (and hence A(/, g) = 3>) and 3)(f, g) = {A}. Choose t e S
with A c X\D(t) (by 3.7) and let c,de R(t), where ci=d (note that 5 is constant-free).
Let A = {a, b} and seS take c to a and d to b (see 2.5). Then f = st and
g = (a, b)f(a, b) = (a, b)f are the required transformations with Z£{f, g) = !£{A).

Now let x e X and choose keS such that k(a) =x and b eX\D(k). (To construct
such k choose by 2.1 a map q in 5 with a e D(q) and b eX\D(q), by 2.2 a map p in 5
which takes q(a) to x, and let k=pq.) It is easy to check that 3)(kf,kg) = <& and

g) = {x}, whence 3.11 ensures that S£{kf, kg) = 5£{x). We let p = kf, q = kg.

We will show (Proposition 3.14) that each maximal function left ideal of S is either a
point left ideal or a non-degenerate set left ideal, and these exhaust all maximal function
left ideals.
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LEMMA 3.13. For all A in @2 and x in X:

(i) 2
(ii) £(A) c 2(x) implies g(A) is degenerate.

Proof, (i) Let A = {a, b} and assume that a =£x. With the aid of Lemmas 2.1 and 3.7
choose a B e D(S) with a e B and b, x e B', together with/ e 5 such that £>(/) = fi. Then
/ e 2(x)\2(A).

(ii) If i?(A) = L(A) U (#(«) n S(b)) c j?(*), then L(A) c #(*). Assume #(/!) * <*>,
then * $ >i and each g such that A\J {x} c D(g) and g(a) = g(b) (chosen by Lemma 2.1)
is in L(A)\££(x). Thus L{A) = <J>, and so £S(A) is degenerate.

PROPOSITION 3.14. Let f, g e S. Then Z£(f, g) is a maximal function left ideal if and
only if either X{f, g) = 2{x), xeX, or g(f, g) = 2(A), where g(A) is non-degenerate,

Proof. Firstly, assume that 5£{f, g) is a maximal function left ideal. Let x e A(/, g).
By 3.12 there exist p, qeS such that SB{p, q) = ie{x). Hence %{f, g) £ % { x ) = %\p, q)
(by 3.11). The maximality of £{f, g) implies

Similarly, if A e 3)(f, g) then there are also t,seS with «S?(f, s) = S£(A) (by 3.12) and
%(f, g) c 2(A) = 2{t, s) (by 3.11), implying that

because of the maximality of 5£{f, g). Suppose 2£{A) is degenerate, then for a eA, by
3.4,

for some I, r eS (by 3.12), a contradiction to the maximality of i?(/, g).
For the converse, assume that 5£{f, g) = !£{x), for some x e X. To show that i?(/, g)

is maximal suppose that there arep, q eS with Z£{p, q) a£6(f, g), that is, by 3.11,

,q) = ( fl # O 0 W H 2(B)). (4)

If <2b{p,q)±<b, then Se(x)c <£(B), for every Be3){p,q), contradicting 3.13(i). Thus
3)(p, q) is empty and, for every y e A.(p, q), 3!(x) c ££{y). Lemma 3.4 ensures that
A.(p, q) = {x} and we deduce from (4) that &(f, g) = S£(p, q).

Finally assume that S£(J, g) = 2!(A), A e 92, and <£(A) is non-degenerate. If
f, g) c £{t, s) for t,seS, then 3.11 implies

(5)

If A(f, .* )*$ , then i?(A)cif(z), for each zeA(/ ,s) , contradicting 3.13(ii). Hence
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A(f, s) = $ and, for each C e 3)(p, q), %(A) c ££{C). Thus 3>(p, q) = {A} (3.9) and we
deduce from (5) that £(f, g) = £(t, s).

It is clear from 3.2 that each automorphism 0 of S permutes maximal function left
ideals. Our aim is to show that <p also permutes point left ideals. If all the set left ideals
are degenerate, that is 5 c $x, then, as the above proposition reveals, the point left ideals
are the only maximal function left ideals. In the next proposition we formulate a property
which distinguishes the non-degenerate set left ideals and is preserved under <j>.

PROPOSITION 3.15. Let S£$x and !£{f,g) be a maximal function left ideal. Then
2£{f, g) is a set left ideal if and only if

V maximal function left ideal L3keS such that <£(kf, kg) = L. (6)

Proof. Assume firstly that 3!{f,g)=<£(A) (non-degenerate), A = {a,b}e&>2- We
show that (6) holds. If L = ££{x), for some x e X, then we appeal to Lemma 3.12. Hence
assume L = !£(B), for some B e 8P2. Choose k in S mapping A onto B (by 2.5). Then
D{kf) = D(kg) and so A.(kf, kg) = O. (Indeed, assume, for example, that u e D(kf)\
D(kg). Then u e D{f) = D(g), since A(/, g) = <D, by 3.11 and 3.13(ii), /(«) e D(k) and
g(u)$D(k). Thus f(u)*g(u), so that by Lemma 3.9 {f(u), g(u)} =A <=D(k), a
contradiction.) Also, 2)(kf, kg) = {B}, since kf(u)i=kg(u), for some u eD(kf), implies
that f{u)i^g{u), or {f(u),g(u)}=A, again by 3.9, and so by the choice of k,
{kf(u), kg(u)} = B. Proposition 3.11 ensures that %(kf, kg) = %{B), proving (6).

For the converse, assume that Z£(f, g) satisfies (6) and is a point left ideal Z£{x)
(Proposition 3.14). Let L = Z£{A), AeSP2> be a non-degenerate set left ideal (recall,
5 £ $x), and it e 5 be such that %{kf, kg) = £(A). Then by 3.11 and 3.13(ii), A(fc/, kg) =
$, that is D(kf) = D(kg). Since £(fg) = ££(x), it follows from 3.11 and 3.13(i) that
A(/, g) ̂  <&. Assume without loss of generality that x =f{y), where y e D(f)\D(g). If
xeD(k), then y e D(kf) = D(kg) cD(g), a contradiction. Hence x $ D(k) and so
k e Z£{x), which means that kf = kg, a contradiction to the assumption that !£{kf, kg) =

) .

PROPOSITION 3.16. Let <j> e Aut 5. Given x e X there exists y e X such that (f>(%(x)) =

Proof. Let x eX and choose f,geS with <£(f g) = <£(x) (by 3.12). Proposition 3.14
ensures that if(/, g) is a maximal function left ideal. Whence

4>{2{x)) = cp(2(f, g)) = ̂ ( 0 ( / ) , ct>(g)) (by 3.2)

is a maximal function left ideal. If 5 contains only degenerate set left ideals then
2£{<p(f), <p{g)) = 2£{y) as required. Hence assume that there are non-degenerate set left
ideals. Since ££(f, g) = Z£{x), by 3.15 there exists a maximal function left ideal L such that
for any k e S, <£{kf, kg) ± L, or for any k' e S, %(k'<p(f), k'(p(g)) * <t>(L). With the aid
of 3.2 we deduce that 0(L) is a maximal function left ideal. Then 3.15 ensures that
%{<t>{f), <t>(g)) = %{y), for some yeX.
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Using the above proposition define a map

n:{2(x):xeX}^>{2(x):xeX} via

for each Z£(x). Similarly, by considering the automorphism 0 ~ \ define a map

S:{X{x):xeX}^{5£{x):xzX} via §(<?(*)) = <t>-\2{x)).

Certainly £ is the inverse of JJ and so we have proved the following.

LEMMA 3.17. rj is a bijection.

By Lemma 3.4, 5£{x) = !£{y) if and only if x = y (x, y eX). We can therefore now
define a map h: X-*Xby fc(;t) = y, where y is given by r\(Z£(x)) = S6(y), for x e l Thus,
with the notation of 3.5,

By 3.17, h is a bijection; that is, /i e <§x. We call /i the bijection associated with <j).
Now we will prove the main result of this paper.

THEOREM 3.18. If S is a ^-normal subsemigroup of 9>x, then Aut 5 = Inn 5.

Proof. If S consists of total transformations we appeal to [3, Theorem 1.1]. If 5
contains a constant map, the result is given in [11, Theorem 2]. Thus we assume that 5 is
a constant-free semigroup containing a proper partial transformation, and so Z£(x) ¥* $
for every x e X.

Take feS, xeD(f) and let f(x)=y. Since f$2(x), also (j>(f) $ ij(i?(x)) =
Z£{h{x)), where h is the bijection associated with (p. Hence h(x) e D((j>(f)).

Now observe that for any k in ££{y), kfeJ£(x), hence for any k' in !£{h{y)),
k'4>(f)e%(h(x)). Let (f>(f)h(x) = z. If z*h(y), we can always choose k' in 2(h(y))
with zeD{k') (Lemma 2.1). But then k'<t>(f)iS£(h{x)), a contradiction which shows
that z = h{y). Thus

Since this is true for all x in D(f), we conclude that

and, since/is an arbitrary element of 5, the result follows.
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